Anomalous diffusion of the heavy quarks through the fractional Langevin equation

被引:3
|
作者
Prakash, Jai [1 ,2 ]
机构
[1] Indian Inst Technol, Dept Phys, Mumbai 400076, India
[2] Indian Inst Technol Goa, Sch Phys Sci, Ponda 403401, Goa, India
关键词
NUCLEUS-NUCLEUS COLLISIONS; EQUILIBRIUM; TRANSPORT; MODELS; FLAVOR;
D O I
10.1103/PhysRevD.109.114004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The dynamics of heavy quarks within the hot QCD medium have been revisited, considering the influence of anomalous diffusion. This study has been conducted using the framework of the fractional Langevin equation involving the Caputo fractional derivative. We introduce a numerical scheme for the fractional Langevin equation and demonstrate that the mean-squared displacement of the particle exhibits anomalous diffusion, deviating from a linear relationship with time. Our analysis calculates various entities, such as mean-squared momentum, momentum spread, and the nuclear suppression factor RAA. Notably, our findings indicate that superdiffusion strongly suppresses the RAA compared to normal diffusion in the hot QCD medium. The possible impacts on other parameters are also discussed.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Fractional nonlinear diffusion equation, solutions and anomalous diffusion
    Silva, A. T.
    Lenzi, E. K.
    Evangelista, L. R.
    Lenzi, M. K.
    da Silva, L. R.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 375 (01) : 65 - 71
  • [12] Anomalous diffusion and fractional advection-diffusion equation
    Chang, FX
    Chen, J
    Huang, W
    ACTA PHYSICA SINICA, 2005, 54 (03) : 1113 - 1117
  • [13] A FRACTIONAL LANGEVIN EQUATION APPROACH TO DIFFUSION MAGNETIC RESONANCE IMAGING
    Cooke, Jennie
    ADVANCES IN CHEMICAL PHYSICS, VOL 147, 2012, 147 : 279 - 378
  • [14] Anomalous fractional diffusion equation for transport phenomena
    Zeng, Qiuhua
    Li, Houqiang
    Liu, De
    Communications in Nonlinear Science and Numerical Simulation, 1999, 4 (02): : 99 - 104
  • [15] Solutions for a generalized fractional anomalous diffusion equation
    Lv, Long-Jin
    Xiao, Jian-Bin
    Zhang, Lin
    Gao, Lei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 225 (01) : 301 - 308
  • [16] Fractional Langevin equation
    Lutz, E
    PHYSICAL REVIEW E, 2001, 64 (05): : 4
  • [17] Iterative Solution of Fractional Diffusion Equation Modelling Anomalous Diffusion
    Elsaid, A.
    Shamseldeen, S.
    Madkour, S.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2016, 11 (02): : 815 - 827
  • [18] Fractional diffusion equation approach to the anomalous diffusion on fractal lattices
    Huh, D
    Lee, J
    Lee, S
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2005, 26 (11): : 1723 - 1727
  • [19] Anomalous diffusion in peripheral heavy-ion collisions and the Langevin formalism
    Ploszajczak, M
    Srokowski, T
    PROCEEDINGS OF THE XVII RCNP INTERNATIONAL SYMPOSIUM ON INNOVATIVE COMPUTATIONAL METHODS IN NUCLEAR MANY-BODY PROBLEMS: TOWARDS A NEW GENERATION OF PHYSICS IN FINITE QUANTUM SYSTEMS, 1998, : 452 - 460
  • [20] The Generalized Langevin Equation in Harmonic Potentials: Anomalous Diffusion and Equipartition of Energy
    Gustavo Didier
    Hung D. Nguyen
    Communications in Mathematical Physics, 2022, 393 : 909 - 954