Weak magnetohydrodynamic turbulence theory revisited

被引:0
|
作者
Ziebell, Luiz F. [1 ]
Yoon, Peter H. [2 ]
Choe, Gwangson [3 ]
机构
[1] Univ Fed Rio Grande Do Sul UFRGS, Inst Fis, BR-91501970 Porto Alegre, RS, Brazil
[2] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[3] Kyung Hee Univ, Sch Space Res, Yongin 17104, Gyeonggi, South Korea
基金
新加坡国家研究基金会;
关键词
SPECTRUM;
D O I
10.1063/5.0195994
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Two recent papers, P. H. Yoon and G. Choe, Phys. Plasmas 28, 082306 (2021) and Yoon et al., Phys. Plasmas 29, 112303 (2022), utilized in the derivation of the kinetic equation for the intensity of turbulent fluctuations the assumption that the wave spectra are isotropic, that is, the ensemble-averaged magnetic field tensorial fluctuation intensity is given by the isotropic diagonal form, <delta B-i delta B-j >(k) = <delta B-2 >(k)delta(ij). However, it is more appropriate to describe the incompressible magnetohydrodynamic turbulence involving shear Alfvenic waves by modeling the turbulence spectrum as being anisotropic. That is, the tensorial fluctuation intensity should be different in diagonal elements across and along the direction of the wave vector, <delta B-i delta B-j >(k) = 1/2 <delta B-perpendicular to(2)>(k) (delta(ij) - k(i)k(j)/k(2)) + <delta B-parallel to(2)>(k) (k(i)k(j)/k(2)). In the present paper, we thus reformulate the weak magnetohydrodynamic turbulence theory under the assumption of anisotropy and work out the form of nonlinear wave kinetic equation. (C) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Alternative formulation of weak magnetohydrodynamic turbulence theory
    Yoon, Peter H.
    Ziebell, Luiz F.
    Choe, Gwangson
    PHYSICS OF PLASMAS, 2022, 29 (11)
  • [2] Electromagnetic weak turbulence theory revisited
    Yoon, P. H.
    Ziebell, L. F.
    Gaelzer, R.
    Pavan, J.
    PHYSICS OF PLASMAS, 2012, 19 (10)
  • [3] Magnetohydrodynamic turbulence revisited
    Goldreich, P
    Sridhar, S
    ASTROPHYSICAL JOURNAL, 1997, 485 (02): : 680 - 688
  • [4] Weak magnetohydrodynamic turbulence
    Yoon, Peter H.
    Choe, Gwangson
    PHYSICS OF PLASMAS, 2021, 28 (08)
  • [5] Weak magnetohydrodynamic turbulence and intermittency
    Meyrand, R. .
    Kiyani, K. . H. .
    Galtier, S.
    JOURNAL OF FLUID MECHANICS, 2015, 770
  • [6] Spectrum of Weak Magnetohydrodynamic Turbulence
    Boldyrev, Stanislav
    Perez, Jean Carlos
    PHYSICAL REVIEW LETTERS, 2009, 103 (22)
  • [7] Imbalanced weak magnetohydrodynamic turbulence
    Lithwick, Y
    Goldreich, P
    ASTROPHYSICAL JOURNAL, 2003, 582 (02): : 1220 - 1240
  • [8] On weak and strong magnetohydrodynamic turbulence
    Perez, Jean Carlos
    Boldyrev, Stanislav
    ASTROPHYSICAL JOURNAL LETTERS, 2008, 672 (01): : L61 - L64
  • [9] Weak magnetohydrodynamic turbulence of a magnetized plasma
    E. A. Kuznetsov
    Journal of Experimental and Theoretical Physics, 2001, 93 : 1052 - 1064
  • [10] Weak magnetohydrodynamic turbulence of a magnetized plasma
    Kuznetsov, EA
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2001, 93 (05) : 1052 - 1064