Autoencoder-Based Restoration of Multi-Channel Sensor Signal Loss

被引:0
|
作者
Lee, Jaejun [1 ]
Seo, Hogeon [1 ,2 ]
Yu, Yonggyun [1 ,2 ]
机构
[1] Korea Atom Energy Res Inst, Daejeon, South Korea
[2] Korea Natl Univ Sci & Technol, Daejeon, South Korea
关键词
Restoration; Multi-channel Signal; Autoencoder; Deep Learning; Signal Loss; NETWORKS;
D O I
10.7779/JKSNT.2024.44.3.213
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We propose a method for restoring lost values in multi -channel sensor signals when specific channels or values are missing by using an autoencoder model. For this purpose, an autoencoder model was trained using normal data and then used to predict the values of the missing channels. Evaluation results showed that the restoration approximated the original values and patterns by utilizing information from the non -missing channels. Additionally, the restoration performance varied, depending on the correlations among different channels. The proposed method can enhance the overall validity of a dataset and contribute to the improvement of the data restoration capability in situations of sensor failures or data loss.
引用
收藏
页码:213 / 218
页数:6
相关论文
共 50 条
  • [21] Adaptive Fourier Decomposition for Multi-Channel Signal Analysis
    Wang, Ze
    Wong, Chi Man
    Rosa, Agostinho
    Qian, Tao
    Wan, Feng
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2022, 70 : 903 - 918
  • [22] Multi-Channel Weight-Sharing Autoencoder Based on Cascade Multi-Head Attention for Multimodal Emotion Recognition
    Zheng, Jiahao
    Zhang, Sen
    Wang, Zilu
    Wang, Xiaoping
    Zeng, Zhigang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 2213 - 2225
  • [23] Autoencoder-based multi-task learning for imputation and classification of incomplete data
    Lai, Xiaochen
    Wu, Xia
    Zhang, Liyong
    APPLIED SOFT COMPUTING, 2021, 98
  • [24] Missing data recovery using autoencoder for multi-channel acoustic scene classification
    Shiroma, Yuki
    Kinoshita, Yuma
    Imoto, Keisuke
    Shiota, Sayaka
    Ono, Nobutaka
    Kiya, Hitoshi
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 767 - 771
  • [25] AE-MCCF: An Autoencoder-Based Multi-criteria Recommendation Algorithm
    Batmaz, Zeynep
    Kaleli, Cihan
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2019, 44 (11) : 9235 - 9247
  • [26] Adaptive Fourier Decomposition for Multi-Channel Signal Analysis
    Wang Z.
    Wong C.M.
    Rosa A.
    Qian T.
    Wan F.
    IEEE Transactions on Applied Superconductivity, 2022, 32 (04)
  • [27] Brain tumor classification using deep convolutional autoencoder-based neural network: multi-task approach
    Fatemh Bashir-Gonbadi
    Hassan Khotanlou
    Multimedia Tools and Applications, 2021, 80 : 19909 - 19929
  • [28] Autoencoder-based anomaly detection of industrial robot arm using stethoscope based internal sound sensor
    Huitaek Yun
    Hanjun Kim
    Young Hun Jeong
    Martin B. G. Jun
    Journal of Intelligent Manufacturing, 2023, 34 : 1427 - 1444
  • [29] Autoencoder-based anomaly detection of industrial robot arm using stethoscope based internal sound sensor
    Yun, Huitaek
    Kim, Hanjun
    Jeong, Young Hun
    Jun, Martin B. G.
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (03) : 1427 - 1444
  • [30] Brain tumor classification using deep convolutional autoencoder-based neural network: multi-task approach
    Bashir-Gonbadi, Fatemh
    Khotanlou, Hassan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (13) : 19909 - 19929