Autoencoder-Based Restoration of Multi-Channel Sensor Signal Loss

被引:0
|
作者
Lee, Jaejun [1 ]
Seo, Hogeon [1 ,2 ]
Yu, Yonggyun [1 ,2 ]
机构
[1] Korea Atom Energy Res Inst, Daejeon, South Korea
[2] Korea Natl Univ Sci & Technol, Daejeon, South Korea
关键词
Restoration; Multi-channel Signal; Autoencoder; Deep Learning; Signal Loss; NETWORKS;
D O I
10.7779/JKSNT.2024.44.3.213
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We propose a method for restoring lost values in multi -channel sensor signals when specific channels or values are missing by using an autoencoder model. For this purpose, an autoencoder model was trained using normal data and then used to predict the values of the missing channels. Evaluation results showed that the restoration approximated the original values and patterns by utilizing information from the non -missing channels. Additionally, the restoration performance varied, depending on the correlations among different channels. The proposed method can enhance the overall validity of a dataset and contribute to the improvement of the data restoration capability in situations of sensor failures or data loss.
引用
收藏
页码:213 / 218
页数:6
相关论文
共 50 条
  • [1] Restoration of multi-channel signal loss using autoencoder with recursive input strategy
    Lee, Jaejun
    Yu, Yonggyun
    Seo, Hogeon
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [2] Autoencoder-based detector for distinguishing process anomaly and sensor failure
    Lee, Chia-Yen
    Chang, Kai
    Ho, Chien
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2024, 62 (19) : 7130 - 7145
  • [3] An Autoencoder-Based I/Q Channel Interaction Enhancement Method for Automatic Modulation Recognition
    Zhang, Fuxin
    Luo, Chunbo
    Xu, Jialang
    Luo, Yang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (07) : 9620 - 9625
  • [4] Autoencoder-based image compression for wireless sensor networks
    Lungisani, Bose Alex
    Zungeru, Adamu Murtala
    Lebekwe, Caspar
    Yahya, Abid
    SCIENTIFIC AFRICAN, 2024, 24
  • [5] Autoencoder-Based Eggshell Crack Detection Using Acoustic Signal
    Yabanova, Ismail
    Balci, Zekeriya
    Yumurtaci, Mehmet
    Unler, Tarik
    JOURNAL OF FOOD PROCESS ENGINEERING, 2024, 47 (11)
  • [6] Autoencoder-based signal modulation and demodulation method for sonobuoy signal transmission and reception
    Park, Jinuk
    Seok, Jongwon
    Hong, Jungpyo
    JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2022, 41 (04): : 461 - 467
  • [7] Autoencoder-Based Signal Modulation and Demodulation Methods for Sonobuoy Signal Transmission and Reception
    Park, Jinuk
    Seok, Jongwon
    Hong, Jungpyo
    SENSORS, 2022, 22 (17)
  • [8] Side-Channel Attacks Based on Multi-Loss Regularized Denoising AutoEncoder
    Hu, Fanliang
    Shen, Jian
    Vijayakumar, Pandi
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 2051 - 2065
  • [9] EXPLORING MULTI-CHANNEL FEATURES FOR DENOISING-AUTOENCODER-BASED SPEECH ENHANCEMENT
    Araki, Shoko
    Hayashi, Tomoki
    Delcroix, Marc
    Fujimoto, Masakiyo
    Takeda, Kazuya
    Nakatani, Tomohiro
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 116 - 120
  • [10] GRAPH CONVOLUTIONAL NETWORKS WITH AUTOENCODER-BASED COMPRESSION AND MULTI-LAYER GRAPH LEARNING
    Giusti, Lorenzo
    Battiloro, Claudio
    Di Lorenzo, Paolo
    Barbarossa, Sergio
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3593 - 3597