Autoencoder-Based Restoration of Multi-Channel Sensor Signal Loss

被引:0
作者
Lee, Jaejun [1 ]
Seo, Hogeon [1 ,2 ]
Yu, Yonggyun [1 ,2 ]
机构
[1] Korea Atom Energy Res Inst, Daejeon, South Korea
[2] Korea Natl Univ Sci & Technol, Daejeon, South Korea
关键词
Restoration; Multi-channel Signal; Autoencoder; Deep Learning; Signal Loss; NETWORKS;
D O I
10.7779/JKSNT.2024.44.3.213
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We propose a method for restoring lost values in multi -channel sensor signals when specific channels or values are missing by using an autoencoder model. For this purpose, an autoencoder model was trained using normal data and then used to predict the values of the missing channels. Evaluation results showed that the restoration approximated the original values and patterns by utilizing information from the non -missing channels. Additionally, the restoration performance varied, depending on the correlations among different channels. The proposed method can enhance the overall validity of a dataset and contribute to the improvement of the data restoration capability in situations of sensor failures or data loss.
引用
收藏
页码:213 / 218
页数:6
相关论文
共 14 条
[1]   Structural health monitoring of civil infrastructure [J].
Brownjohn, J. M. W. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 365 (1851) :589-622
[2]   Recurrent Neural Networks for Multivariate Time Series with Missing Values [J].
Che, Zhengping ;
Purushotham, Sanjay ;
Cho, Kyunghyun ;
Sontag, David ;
Liu, Yan .
SCIENTIFIC REPORTS, 2018, 8
[3]   Comparison of Estimating Missing Values in IoT Time Series Data Using Different Interpolation Algorithms [J].
Ding, Zengyu ;
Mei, Gang ;
Cuomo, Salvatore ;
Li, Yixuan ;
Xu, Nengxiong .
INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2020, 48 (03) :534-548
[4]  
Gondara L, 2016, INT CONF DAT MIN WOR, P241, DOI [10.1109/ICDMW.2016.0041, 10.1109/ICDMW.2016.102]
[5]  
Guilin Huang, 2021, Journal of Physics: Conference Series, V1754, DOI 10.1088/1742-6596/1754/1/012187
[6]   AutoML: A survey of the state-of-the-art [J].
He, Xin ;
Zhao, Kaiyong ;
Chu, Xiaowen .
KNOWLEDGE-BASED SYSTEMS, 2021, 212
[7]   Reducing the dimensionality of data with neural networks [J].
Hinton, G. E. ;
Salakhutdinov, R. R. .
SCIENCE, 2006, 313 (5786) :504-507
[8]   Unsupervised Abnormal Sensor Signal Detection With Channelwise Reconstruction Errors [J].
Kwak, Mingu ;
Kim, Seoung Bum .
IEEE ACCESS, 2021, 9 :39995-40007
[9]   Lost data reconstruction for structural health monitoring using deep convolutional generative adversarial networks [J].
Lei, Xiaoming ;
Sun, Limin ;
Xia, Ye .
STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2021, 20 (04) :2069-2087
[10]   A comprehensive survey on design and application of autoencoder in deep learning [J].
Li, Pengzhi ;
Pei, Yan ;
Li, Jianqiang .
APPLIED SOFT COMPUTING, 2023, 138