FlashSim: accelerating HEP simulation with an end-to-end Machine Learning framework

被引:1
|
作者
Vaselli, Francesco [1 ,3 ]
Rizzi, Andrea [1 ,2 ]
Cattafesta, Filippo [1 ,2 ]
Cicconofri, Gloria [1 ,2 ]
机构
[1] INFN Pisa, Pisa, Italy
[2] Univ Pisa, Pisa, Italy
[3] Scuola Normale Superiore, Pisa, Italy
关键词
D O I
10.1051/epjconf/202429509020
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We developed a first prototype of an end-to-end machine learning based simulation framework for arbitrary analysis ntuples at the CMS experiment. Such a framework, called FlashSim, was capable of simulating a wide variety of physical objects with good performance on 1d distributions, correlations and desired physical content when compared to the current state-of-the-art simulation. Current methods are based on MC techniques, computationally expensive and requiring a long time to compute. Our prototype was trained to replicate the samples from state-of-the-art methods through the use of the Normalizing Flows algorithm. It showed compatible results with a speedup of several orders of magnitude. This type of approach opens the way to general, analysis agnostic simulation frameworks which may be able to tackle the challenges of the simulation needs for HL-LHC and future collaborations.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] End-to-end simulation: The front end
    Haber, I
    Bieniosek, FM'
    Celata, BM
    Friedman, A
    Grote, DP
    Henestroza, E
    Vay, JL
    Bernal, S
    Kishek, RA
    O'Shea, PG
    Reiser, M
    Herrmannsfeldt, WB
    LASER AND PARTICLE BEAMS, 2002, 20 (03) : 431 - 433
  • [42] Promotheus: An End-to-End Machine Learning Framework for Optimizing Markdown in Online Fashion E-commerce
    Loh, Eleanor
    Khandelwal, Jalaj
    Regan, Brian
    Little, Duncan A.
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 3447 - 3457
  • [43] Novel Contract-based Runtime Explainability Framework for End-to-End Ensemble Machine Learning Serving
    Minh-Tri Nguyen
    Hong-Linh Truong
    Tram Truong-Huu
    PROCEEDINGS 2024 IEEE/ACM 3RD INTERNATIONAL CONFERENCE ON AI ENGINEERING-SOFTWARE ENGINEERING FOR AI, CAIN 2024, 2024, : 234 - 244
  • [44] End-to-End Learning from Noisy Crowd to Supervised Machine Learning Models
    Younesian, Taraneh
    Hong, Chi
    Ghiassi, Amirmasoud
    Birke, Robert
    Chen, Lydia Y.
    2020 IEEE SECOND INTERNATIONAL CONFERENCE ON COGNITIVE MACHINE INTELLIGENCE (COGMI 2020), 2020, : 17 - 26
  • [45] RADIOMETER END-TO-END SIMULATION
    SCHUELER, CF
    THORNE, KA
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1982, 345 : 102 - 110
  • [46] End-to-End simulation framework for astronomical spectrographs: SOXS, CUBES and ANDES
    Scaudo, A.
    Genoni, M.
    Li Causi, G.
    Cabona, L.
    Landoni, M.
    Campana, S.
    Schipani, P.
    Claudi, R.
    Aliverti, M.
    Baruffolo, A.
    Ben-Ami, S.
    Biondi, F.
    Capasso, G.
    Cosentino, R.
    D'Alessio, F.
    D'Avanzo, P.
    Hershko, O.
    Kuncarayakti, H.
    Munari, M.
    Santhakumari, K. Radhakrishnan
    Pignata, G.
    Rubin, A.
    Scuderi, S.
    Vitali, F.
    Young, D.
    Achren, J.
    Araiza-Duran, J. A.
    Arcavi, I
    Battaini, F.
    Brucalassi, A.
    Bruch, R.
    Cappellaro, E.
    Colapietro, M.
    Della Valle, M.
    De Pascale, M.
    Di Benedetto, R.
    D'Orsi, S.
    Gal-Yam, A.
    Hernandez, M.
    Kotilainen, J.
    Marty, L.
    Mattila, S.
    Rappaport, M.
    Ricci, D.
    Riva, M.
    Salasnich, B.
    Smartt, S.
    Sanchez, R. Zanmar
    Stritzinger, M.
    Ventura, H.
    MODELING, SYSTEMS ENGINEERING, AND PROJECT MANAGEMENT FOR ASTRONOMY XI, PT 1, 2024, 13099
  • [47] A Framework for End-to-End Simulation of High-performance Computing Systems
    Denzel, Wolfgang E.
    Li, Jian
    Walker, Peter
    Jin, Yuho
    SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL, 2010, 86 (5-6): : 331 - 350
  • [48] End-to-End Machine Learning Solution for Recognizing Handwritten Arabic Documents
    Shtaiwi, Reem E.
    Abandah, Gheith A.
    Sawalhah, Safaa A.
    2022 13TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2022, : 180 - 185
  • [49] Machine Learning Based End-to-End Constellation Training for Communication Systems
    Lin, Po-Chiang
    PROCEEDINGS OF 2022 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2022, : 1768 - 1773
  • [50] End-To-End Quantum Machine Learning Implemented with Controlled Quantum Dynamics
    Wu, Re-Bing
    Cao, Xi
    Xie, Pinchen
    Liu, Yu-xi
    PHYSICAL REVIEW APPLIED, 2020, 14 (06)