Atomic layer deposition of aluminum-doped zinc oxide onto MoO3 nanorods toward enhanced lithium storage performance

被引:26
作者
Ji, Xin [1 ]
Yao, Tianhao [1 ]
Liu, Xin [1 ]
Ma, Dandan [1 ]
Han, Xiaogang [1 ]
Wang, Hongkang [1 ]
机构
[1] Xi An Jiao Tong Univ, Ctr Nanomat Renewable Energy CNRE, Sch Elect Engn, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; MoO3; nanorods; Aluminum-doped zinc oxide; Atomic layer deposition; Electrochemical properties; ION BATTERIES; ELECTROCHEMICAL PERFORMANCE; GRAPHENE OXIDE; ANODE; MICROSPHERES; PASSIVATION; COATINGS; FILM;
D O I
10.1016/j.scriptamat.2023.115769
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
An atomic layer deposition (ALD) of aluminum -doped zinc oxide (AZO) onto MoO 3 nanorods (denoted as MoO 3 @AZO) was developed to enhance the lithium storage performance of MoO 3 anode. Thanks to the highly conductive and robust AZO layer, the MoO 3 @AZO electrode demonstrated high pseudocapacitive contribution (76.2 % at 1.0 mV s -1 ), enhanced electron/ion transferability, outstanding rate performance (708 mAh g - 1 at 2 A g - 1 ) and excellent cycling stability (973 mAh g - 1 after 100 cycles at 0.2 A g - 1 with a high capacity retention of 92.8 %) when applied as an anode for lithium -ion batteries. Ex -situ transmission electron microscopy analysis revealed that the rod feature of MoO 3 @AZO was well retained with the protection of the AZO layer even after 100 cycles. Moreover, the ALD-AZO coating may also be commonly used for other metal oxides to enhance their electron conductivity and structural stability.
引用
收藏
页数:7
相关论文
共 59 条
[1]   Surface Passivation of MoO3 Nanorods by Atomic Layer Deposition toward High Rate Durable Li Ion Battery Anodes [J].
Ahmed, B. ;
Shahid, Muhammad ;
Nagaraju, D. H. ;
Anjum, D. H. ;
Hedhili, Mohamed N. ;
Alshareef, H. N. .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (24) :13154-13163
[2]   Two-Dimensional Molybdenum Trioxide and Dichalcogenides [J].
Balendhran, Sivacarendran ;
Walia, Sumeet ;
Nili, Hussein ;
Ou, Jian Zhen ;
Zhuiykov, Serge ;
Kaner, Richard B. ;
Sriram, Sharath ;
Bhaskaran, Madhu ;
Kalantar-zadeh, Kourosh .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (32) :3952-3970
[4]   Pyrolytic synthesis of MoO3 nanoplates within foam-like carbon nanoflakes for enhanced lithium ion storage [J].
Cao, Daxian ;
Dai, Yanzhu ;
Xie, Sanmu ;
Wang, Hongkang ;
Niu, Chunming .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2018, 514 :686-693
[5]   Plate-like carbon-supported Fe3C nanoparticles with superior electrochemical performance [J].
Chen, Chuan ;
Qian, Sen ;
Yao, Tian-Hao ;
Guo, Jing-Hong ;
Wang, Hong-Kang .
RARE METALS, 2021, 40 (06) :1402-1411
[6]   Boosting the electrochemical performance of MoO3 anode for long-life lithium ion batteries: Dominated by an ultrathin TiO2 passivation layer [J].
Cheng, Xiaopeng ;
Li, Yonghe ;
Sang, Lijun ;
Ma, Jinyao ;
Shi, Huifeng ;
Liu, Xianqiang ;
Lu, Junxia ;
Zhang, Yuefei .
ELECTROCHIMICA ACTA, 2018, 269 :241-249
[7]   Electrochemical Characteristics of Al2O3-Doped ZnO Films by Magnetron Sputtering [J].
Dai, He-Qun ;
Xu, Hao ;
Zhou, Yong-Ning ;
Lu, Fang ;
Fu, Zheng-Wen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (01) :1519-1525
[8]   Fe2O3/MoO3@NG Heterostructure Enables High Pseudocapacitance and Fast Electrochemical Reaction Kinetics for Lithium-Ion Batteries [J].
Ding, Juan ;
Sheng, Rui ;
Zhang, Yue ;
Huang, Yudai ;
Cheng, Wenhua ;
Liu, Zhenjie ;
Wang, Xingchao ;
Guo, Yong ;
Wang, Jiulin ;
Jia, Dianzeng ;
Tang, Xincun ;
Wang, Lei .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (33) :37747-37758
[9]  
Du Y, 2020, ELECTROCHIM ACTA, V334, DOI [10.1016/j.electacta.2019.135593, 10.1016/j.electacta.2020.136387]
[10]   A comparison of NiMo/Al2O3 catalysts prepared by impregnation and coprecipitation methods for hydrodesulfurization of dibenzothiophene [J].
Liu, Fang ;
Xu, Shaoping ;
Cao, L. ;
Chi, Y. ;
Zhang, T. ;
Xue, Dongfeng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (20) :7396-7402