Bacterial Cellulose: A Sustainable Source for Hydrogels and 3D-Printed Scaffolds for Tissue Engineering

被引:4
|
作者
Utoiu, Elena [1 ]
Manoiu, Vasile Sorin [1 ]
Oprita, Elena Iulia [1 ]
Craciunescu, Oana [1 ]
机构
[1] Natl Inst R&D Biol Sci, 296 Splaiul Independentei, Bucharest 060031, Romania
关键词
bacterial cellulose; hydrogel; ink; 3D printing; wound healing; tissue engineering; MECHANICAL-PROPERTIES; ACID; NANOCELLULOSE; NANOFIBERS;
D O I
10.3390/gels10060387
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Bacterial cellulose is a biocompatible biomaterial with a unique macromolecular structure. Unlike plant-derived cellulose, bacterial cellulose is produced by certain bacteria, resulting in a sustainable material consisting of self-assembled nanostructured fibers with high crystallinity. Due to its purity, bacterial cellulose is appealing for biomedical applications and has raised increasing interest, particularly in the context of 3D printing for tissue engineering and regenerative medicine applications. Bacterial cellulose can serve as an excellent bioink in 3D printing, due to its biocompatibility, biodegradability, and ability to mimic the collagen fibrils from the extracellular matrix (ECM) of connective tissues. Its nanofibrillar structure provides a suitable scaffold for cell attachment, proliferation, and differentiation, crucial for tissue regeneration. Moreover, its mechanical strength and flexibility allow for the precise printing of complex tissue structures. Bacterial cellulose itself has no antimicrobial activity, but due to its ideal structure, it serves as matrix for other bioactive molecules, resulting in a hybrid product with antimicrobial properties, particularly advantageous in the management of chronic wounds healing process. Overall, this unique combination of properties makes bacterial cellulose a promising material for manufacturing hydrogels and 3D-printed scaffolds, advancing the field of tissue engineering and regenerative medicine.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Characterization and Preliminary Biological Evaluation of 3D-Printed Porous Scaffolds for Engineering Bone Tissues
    Liu, Chen-Guang
    Zeng, Yu-Ting
    Kankala, Ranjith Kumar
    Zhang, Shan-Shan
    Chen, Ai-Zheng
    Wang, Shi-Bin
    MATERIALS, 2018, 11 (10)
  • [42] Biological study of polyethyleneimine functionalized polycaprolactone 3D-printed scaffolds for bone tissue engineering
    Khoshnood, Negin
    Shahrezayee, Mohammad Hossein
    Shahrezayee, Mostafa
    Shams, Alireza
    Zamanian, Ali
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (29)
  • [43] Fused Deposition Modeling 3D-Printed Scaffolds for Bone Tissue Engineering Applications: A Review
    Kumar, Pawan
    Shamim
    Muztaba, Mohammad
    Ali, Tarmeen
    Bala, Jyoti
    Sidhu, Haramritpal Singh
    Bhatia, Amit
    ANNALS OF BIOMEDICAL ENGINEERING, 2024, 52 (05) : 1184 - 1194
  • [44] 3D-Printed Gelatin Methacryloyl-Based Scaffolds with Potential Application in Tissue Engineering
    Leu Alexa, Rebeca
    Iovu, Horia
    Ghitman, Jana
    Serafim, Andrada
    Stavarache, Cristina
    Marin, Maria-Minodora
    Ianchis, Raluca
    POLYMERS, 2021, 13 (05) : 1 - 17
  • [45] Development of 3D-Printed PCL/ Baghdadite Nanocomposite Scaffolds for Bone Tissue Engineering Applications
    Emadi, Hosein
    Baghani, Mostafa
    Khodaei, Mohammad
    Baniassadi, Majid
    Tavangarian, Fariborz
    JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2024, 32 (08) : 3668 - 3686
  • [46] Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds
    Serra, Tiziano
    Ortiz-Hernandez, Monica
    Engel, Elisabeth
    Planell, Josep A.
    Navarro, Melba
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2014, 38 : 55 - 62
  • [47] Impacts of channel direction on bone tissue engineering in 3D-printed carbonate apatite scaffolds
    Hayashi, Koichiro
    Kato, Nao
    Kato, Masaki
    Ishikawa, Kunio
    MATERIALS & DESIGN, 2021, 204
  • [48] 3D-Printed Reinforcement Scaffolds with Targeted Biodegradation Properties for the Tissue Engineering of Articular Cartilage
    Tosoratti, Enrico
    Fisch, Philipp
    Taylor, Scott
    Laurent-Applegate, Lee Ann
    Zenobi-Wong, Marcy
    ADVANCED HEALTHCARE MATERIALS, 2021, 10 (23)
  • [49] Synthetic peptide hydrogels as 3D scaffolds for tissue engineering
    Ding, Xin
    Zhao, Huimin
    Li, Yuzhen
    Lee, Ashlynn Lingzhi
    Li, Zongshao
    Fu, Mengjing
    Li, Chengnan
    Yang, Yi Yan
    Yuan, Peiyan
    ADVANCED DRUG DELIVERY REVIEWS, 2020, 160 : 78 - 104
  • [50] Entrapped in cage (EiC) scaffolds of 3D-printed polycaprolactone and porous silk fibroin for meniscus tissue engineering
    Cengiz, Ibrahim Fatih
    Maia, Fatima Raquel
    Morais, Alain da Silva
    Silva-Correia, Joana
    Pereira, Helder
    Canadas, Raphael F.
    Espregueira-Mendes, Joao
    Kwon, Il Keun
    Reis, Rui L.
    Oliveira, Joaquim Miguel
    BIOFABRICATION, 2020, 12 (02)