Bacterial Cellulose: A Sustainable Source for Hydrogels and 3D-Printed Scaffolds for Tissue Engineering

被引:4
|
作者
Utoiu, Elena [1 ]
Manoiu, Vasile Sorin [1 ]
Oprita, Elena Iulia [1 ]
Craciunescu, Oana [1 ]
机构
[1] Natl Inst R&D Biol Sci, 296 Splaiul Independentei, Bucharest 060031, Romania
关键词
bacterial cellulose; hydrogel; ink; 3D printing; wound healing; tissue engineering; MECHANICAL-PROPERTIES; ACID; NANOCELLULOSE; NANOFIBERS;
D O I
10.3390/gels10060387
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Bacterial cellulose is a biocompatible biomaterial with a unique macromolecular structure. Unlike plant-derived cellulose, bacterial cellulose is produced by certain bacteria, resulting in a sustainable material consisting of self-assembled nanostructured fibers with high crystallinity. Due to its purity, bacterial cellulose is appealing for biomedical applications and has raised increasing interest, particularly in the context of 3D printing for tissue engineering and regenerative medicine applications. Bacterial cellulose can serve as an excellent bioink in 3D printing, due to its biocompatibility, biodegradability, and ability to mimic the collagen fibrils from the extracellular matrix (ECM) of connective tissues. Its nanofibrillar structure provides a suitable scaffold for cell attachment, proliferation, and differentiation, crucial for tissue regeneration. Moreover, its mechanical strength and flexibility allow for the precise printing of complex tissue structures. Bacterial cellulose itself has no antimicrobial activity, but due to its ideal structure, it serves as matrix for other bioactive molecules, resulting in a hybrid product with antimicrobial properties, particularly advantageous in the management of chronic wounds healing process. Overall, this unique combination of properties makes bacterial cellulose a promising material for manufacturing hydrogels and 3D-printed scaffolds, advancing the field of tissue engineering and regenerative medicine.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] 3D-printed fish gelatin scaffolds for cartilage tissue engineering
    Maihemuti, Abudureheman
    Zhang, Han
    Lin, Xiang
    Wang, Yangyufan
    Xu, Zhihong
    Zhang, Dagan
    Jiang, Qing
    BIOACTIVE MATERIALS, 2023, 26 : 77 - 87
  • [2] Cellulose-in-cellulose 3D-printed bioaerogels for bone tissue engineering
    Iglesias-Mejuto, Ana
    Malandain, Nanthilde
    Ferreira-Goncalves, Tania
    Ardao, Ines
    Reis, Catarina Pinto
    Laromaine, Anna
    Roig, Anna
    Garcia-Gonzalez, Carlos A.
    CELLULOSE, 2024, 31 (01) : 515 - 534
  • [3] 3D-printed tubular scaffolds for vascular tissue engineering
    Rabionet, Marc
    Jesus Guerra, Antonio
    Puig, Teresa
    Ciurana, Joaquim
    19TH CIRP CONFERENCE ON ELECTRO PHYSICAL AND CHEMICAL MACHINING, 2018, 68 : 352 - 357
  • [4] On the progress of 3D-printed hydrogels for tissue engineering
    Rigoberto C. Advincula
    John Ryan C. Dizon
    Eugene B. Caldona
    Robert Andrew Viers
    Francis Dave C. Siacor
    Reymark D. Maalihan
    Alejandro H. Espera
    MRS Communications, 2021, 11 : 539 - 553
  • [5] On the progress of 3D-printed hydrogels for tissue engineering
    Advincula, Rigoberto C.
    Dizon, John Ryan C.
    Caldona, Eugene B.
    Viers, Robert Andrew
    Siacor, Francis Dave C.
    Maalihan, Reymark D.
    Espera, Alejandro H., Jr.
    MRS COMMUNICATIONS, 2021, 11 (05) : 539 - 553
  • [6] 3D-printed scaffolds with calcified layer for osteochondral tissue engineering
    Li, Zhengyu
    Jia, Shuaijun
    Xiong, Zhuo
    Long, Qianfa
    Yan, Shaorong
    Hao, Fu
    Liu, Jian
    Yuan, Zhi
    JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2018, 126 (03) : 389 - 396
  • [7] Cellulose-in-cellulose 3D-printed bioaerogels for bone tissue engineering
    Ana Iglesias-Mejuto
    Nanthilde Malandain
    Tânia Ferreira-Gonçalves
    Inés Ardao
    Catarina Pinto Reis
    Anna Laromaine
    Anna Roig
    Carlos A. García-González
    Cellulose, 2024, 31 : 515 - 534
  • [8] Biological evaluation of 3D-Printed chitosan-based scaffolds for tissue engineering
    Behrooznia, Zahra
    Nourmohammadi, Jhamak
    Mohammadi, Zahra
    Shabani, Fatemeh
    Mashhadi, Rahele
    CARBOHYDRATE RESEARCH, 2025, 551
  • [9] Chitosan-based 3D-printed scaffolds for bone tissue engineering
    Yadav, L. Roshini
    Chandran, S. Viji
    Lavanya, K.
    Selvamurugan, N.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 183 : 1925 - 1938
  • [10] Production of 3D-Printed Tympanic Membrane Scaffolds as a Tissue Engineering Application
    Ilhan, Elif
    Ulag, Songul
    Sahin, Ali
    Ekren, Nazmi
    Kilic, Osman
    Oktar, Faik Nuzhet
    Gunduz, Oguzhan
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING (IWBBIO 2020), 2020, 12108 : 175 - 184