Bacterial Cellulose: A Sustainable Source for Hydrogels and 3D-Printed Scaffolds for Tissue Engineering

被引:4
|
作者
Utoiu, Elena [1 ]
Manoiu, Vasile Sorin [1 ]
Oprita, Elena Iulia [1 ]
Craciunescu, Oana [1 ]
机构
[1] Natl Inst R&D Biol Sci, 296 Splaiul Independentei, Bucharest 060031, Romania
关键词
bacterial cellulose; hydrogel; ink; 3D printing; wound healing; tissue engineering; MECHANICAL-PROPERTIES; ACID; NANOCELLULOSE; NANOFIBERS;
D O I
10.3390/gels10060387
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Bacterial cellulose is a biocompatible biomaterial with a unique macromolecular structure. Unlike plant-derived cellulose, bacterial cellulose is produced by certain bacteria, resulting in a sustainable material consisting of self-assembled nanostructured fibers with high crystallinity. Due to its purity, bacterial cellulose is appealing for biomedical applications and has raised increasing interest, particularly in the context of 3D printing for tissue engineering and regenerative medicine applications. Bacterial cellulose can serve as an excellent bioink in 3D printing, due to its biocompatibility, biodegradability, and ability to mimic the collagen fibrils from the extracellular matrix (ECM) of connective tissues. Its nanofibrillar structure provides a suitable scaffold for cell attachment, proliferation, and differentiation, crucial for tissue regeneration. Moreover, its mechanical strength and flexibility allow for the precise printing of complex tissue structures. Bacterial cellulose itself has no antimicrobial activity, but due to its ideal structure, it serves as matrix for other bioactive molecules, resulting in a hybrid product with antimicrobial properties, particularly advantageous in the management of chronic wounds healing process. Overall, this unique combination of properties makes bacterial cellulose a promising material for manufacturing hydrogels and 3D-printed scaffolds, advancing the field of tissue engineering and regenerative medicine.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] On the progress of 3D-printed hydrogels for tissue engineering
    Advincula, Rigoberto C.
    Dizon, John Ryan C.
    Caldona, Eugene B.
    Viers, Robert Andrew
    Siacor, Francis Dave C.
    Maalihan, Reymark D.
    Espera, Alejandro H., Jr.
    MRS COMMUNICATIONS, 2021, 11 (05) : 539 - 553
  • [2] On the progress of 3D-printed hydrogels for tissue engineering
    Rigoberto C. Advincula
    John Ryan C. Dizon
    Eugene B. Caldona
    Robert Andrew Viers
    Francis Dave C. Siacor
    Reymark D. Maalihan
    Alejandro H. Espera
    MRS Communications, 2021, 11 : 539 - 553
  • [3] 3D-printed tubular scaffolds for vascular tissue engineering
    Rabionet, Marc
    Jesus Guerra, Antonio
    Puig, Teresa
    Ciurana, Joaquim
    19TH CIRP CONFERENCE ON ELECTRO PHYSICAL AND CHEMICAL MACHINING, 2018, 68 : 352 - 357
  • [4] 3D-printed scaffolds for tissue engineering applications using thermosensitive hydrogels based on biopolymer blends
    Koumentakou, Ioanna
    Michopoulou, Anna
    Noordam, Michiel Jan
    Terzopoulou, Zoi
    Bikiaris, Dimitrios N.
    JOURNAL OF MATERIALS SCIENCE, 2024, 59 (20) : 9021 - 9041
  • [5] 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering
    Dutta, Sayan Deb
    Hexiu, Jin
    Patel, Dinesh K.
    Ganguly, Keya
    Lim, Ki-Taek
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 167 : 644 - 658
  • [6] 3D-Printed Filaments: Alginate Hydrogels With Cellulose Nanofibers as Functional Biomaterials for Tissue Engineering Applications
    Taha, Mohamed
    Abouzeid, Ragab
    Elbatran, A. H. Abdelbaky
    Shehadeh, M.
    Alfadhel, Husain
    Mazi, Wafa
    Omer, Noha
    Abdelaziz, Mahmoud A.
    Mogharbel, Amal T.
    Mousa, Hamouda M.
    INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2024, 2024
  • [7] 3D-printed fish gelatin scaffolds for cartilage tissue engineering
    Maihemuti, Abudureheman
    Zhang, Han
    Lin, Xiang
    Wang, Yangyufan
    Xu, Zhihong
    Zhang, Dagan
    Jiang, Qing
    BIOACTIVE MATERIALS, 2023, 26 : 77 - 87
  • [8] HYBRID 3D-PRINTED HYDROGEL SCAFFOLDS FOR LIVER TISSUE ENGINEERING
    Carpentier, Nathan
    Van der Meeren, Louis
    Skirtach, Andre
    Devisscher, Lindsey
    Van Vlierberghe, Hans
    Dubruel, Peter
    Van Vlierberghe, Sandra
    TISSUE ENGINEERING PART A, 2023, 29 (11-12) : 852 - 853
  • [9] Cellulose-in-cellulose 3D-printed bioaerogels for bone tissue engineering
    Ana Iglesias-Mejuto
    Nanthilde Malandain
    Tânia Ferreira-Gonçalves
    Inés Ardao
    Catarina Pinto Reis
    Anna Laromaine
    Anna Roig
    Carlos A. García-González
    Cellulose, 2024, 31 : 515 - 534
  • [10] 3D-printed microstructured alginate scaffolds for neural tissue engineering
    Li, Jianfeng
    Hietel, Benjamin
    Brunk, Michael G. K.
    Reimers, Armin
    Willems, Christian
    Groth, Thomas
    Cynis, Holger
    Adelung, Rainer
    Schuett, Fabian
    Sacher, Wesley D.
    Poon, Joyce K. S.
    TRENDS IN BIOTECHNOLOGY, 2025, 43 (02)