Remarks on Global Hölder regularity for a class of Monge-Ampère type equations

被引:0
|
作者
Liu, Caifeng [1 ]
Zhang, Wanwan [2 ]
机构
[1] Northwest Univ, Ctr Nonlinear Studies, Sch Math, Xian 710127, Peoples R China
[2] Jiangxi Normal Univ, Sch Math & Stat, Nanchang 330022, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Dirichlet problem; Monge-Amp & egrave; re type equations; Global H & ouml; lder regularity; MONGE-AMPERE EQUATION;
D O I
10.1016/j.jmaa.2024.128311
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we revisit the global H & ouml;lder regularity of nonzero convex solutions to the Dirichlet problem for a class of Monge -Amp & egrave;re type equations. Based on the comparison principle, by choosing delicate auxiliary functions to construct the subsolutions, we extend the boundary regularity obtained in [Li -Li, Sci. China Math. 65 (3) (2022)] to more general equations, in which the parameters alpha, beta, gamma in the boundness condition are less restrictive. Also, the non-decreasing condition there can be replaced with a homogeneous type condition. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:25
相关论文
共 50 条