Nonstabilizerness via Matrix Product States in the Pauli Basis

被引:20
作者
Tarabunga, Poetri Sonya [1 ,2 ,3 ]
Tirrito, Emanuele [1 ,4 ,5 ]
Banuls, Mari Carmen [6 ,7 ]
Dalmonte, Marcello [1 ,2 ]
机构
[1] Abdus Salam Int Ctr Theoret Phys ICTP, Str Costiera 11, I-34151 Trieste, Italy
[2] SISSA, Via Bonomea 265, Trieste 34136, Italy
[3] INFN, Sez Trieste, via Valerio 2, I-34127 Trieste, Italy
[4] Univ Trento, Pitaevskii BEC Ctr, CNR INO, Via Sommar 14, I-38123 Trento, Italy
[5] Univ Trento, Dipartimento Fis, Via Sommar 14, Trento, Italy
[6] Max Planck Inst Quantenoptik, Hans Kopfermann Str 1, D-85748 Garching, Germany
[7] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
关键词
RENORMALIZATION-GROUP; QUANTUM; ENTANGLEMENT; SIMULATION;
D O I
10.1103/PhysRevLett.133.010601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonstabilizerness, also known as "magic," stands as a crucial resource for achieving a potential advantage in quantum computing. Its connection to many-body physical phenomena is poorly understood at present, mostly due to a lack of practical methods to compute it at large scales. We present a novel approach for the evaluation of nonstabilizerness within the framework of matrix product states (MPSs), based on expressing the MPS directly in the Pauli basis. Our framework provides a powerful tool for efficiently calculating various measures of nonstabilizerness, including stabilizer R & eacute;nyi entropies, stabilizer nullity, and Bell magic, and enables the learning of the stabilizer group of an MPS. We showcase the efficacy and versatility of our method in the ground states of Ising and XXZ spin chains, as well as in circuits dynamics that has recently been realized in Rydberg atom arrays, where we provide concrete benchmarks for future experiments on logical qubits up to twice the sizes already realized.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Frustration Free Gapless Hamiltonians for Matrix Product States [J].
Fernandez-Gonzalez, C. ;
Schuch, N. ;
Wolf, M. M. ;
Cirac, J. I. ;
Perez-Garcia, D. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 333 (01) :299-333
[42]   Matrix Product States for Dynamical Simulation of Infinite Chains [J].
Banuls, M. C. ;
Hastings, M. B. ;
Verstraete, F. ;
Cirac, J. I. .
PHYSICAL REVIEW LETTERS, 2009, 102 (24)
[43]   Global quantum discord in matrix product states and the application [J].
Sun, Zhao-Yu ;
Liao, Yan-E ;
Guo, Bin ;
Huang, Hai-Lin .
ANNALS OF PHYSICS, 2015, 359 :115-124
[44]   Explainable natural language processing with matrix product states [J].
Tangpanitanon, Jirawat ;
Mangkang, Chanatip ;
Bhadola, Pradeep ;
Minato, Yuichiro ;
Angelakis, Dimitris G. ;
Chotibut, Thiparat .
NEW JOURNAL OF PHYSICS, 2022, 24 (05)
[45]   Variational optimization algorithms for uniform matrix product states [J].
Zauner-Stauber, V. ;
Vanderstraeten, L. ;
Fishman, M. T. ;
Verstraete, F. ;
Haegeman, J. .
PHYSICAL REVIEW B, 2018, 97 (04)
[46]   Error estimates for extrapolations with matrix-product states [J].
Hubig, C. ;
Haegeman, J. ;
Schollwoeck, U. .
PHYSICAL REVIEW B, 2018, 97 (04)
[47]   The mass spectrum of the Schwinger model with matrix product states [J].
Banuls, M. C. ;
Cichy, K. ;
Cirac, J. I. ;
Jansen, K. .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11)
[48]   Optimal matrix product states for the Heisenberg spin chain [J].
Latorre, Jose I. ;
Pico, Vicent .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (26)
[49]   Matrix product state algorithms for Gaussian fermionic states [J].
Schuch, Norbert ;
Bauer, Bela .
PHYSICAL REVIEW B, 2019, 100 (24)
[50]   Integrable Matrix Product States from boundary integrability [J].
Pozsgay, Balazs ;
Piroli, Lorenzo ;
Vernier, Eric .
SCIPOST PHYSICS, 2019, 6 (05)