Performance of full-scale rural wastewater treatment plants in the reduction of antibiotic-resistant bacteria and antibiotic resistance genes from small-city effluents

被引:2
作者
Leiva, Ana Maria [1 ]
Gomez, Gloria [1 ]
Gonzalez-Rocha, Gerardo [2 ]
Pina, Benjamin [3 ]
Vidal, Gladys [1 ]
机构
[1] Univ Concepcion, Environm Sci Fac, Engn & Biotechnol Environm Grp, Concepcion, Chile
[2] Univ Concepcion, Fac Ciencias Biol, Dept Microbiol, Lab Invest Agentes Antibacterianos LIAA, Concepcion, Chile
[3] Inst Environm Assessment & Water Res IDAEA CSIC, Jordi Girona,18, Barcelona 08034, Spain
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2024年 / 12卷 / 02期
关键词
Antibiotic-resistant bacteria; Antibiotic resistance genes; Biological treatment; Water quality parameters principal component; analysis disinfection; CONSTRUCTED WETLANDS; ACTIVATED-SLUDGE; REMOVAL;
D O I
10.1016/j.jece.2024.112322
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The main objective of this study was to evaluate the performance of full-scale rural wastewater treatment plants (WWTPs) in the reduction of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) from small-city effluents. Twenty full-scale WWTPs in rural Chile with different biological treatment technologies (vermifiltration (VF), activated sludge (AS) and biodisc (BD)) and disinfection treatments (chlorination (Cl) and UV irradiation (UV)) were monitored and studied in two campaigns: Campaign 1 (20 WWTPs) and Campaign 2 (6 WWTPs). In both campaigns, the rural WWTPs improved the water quality of the effluents very significantly (90%, 70%, and 40% reductions in TU, COD, and NH 4 + -N, respectively) and reduced ARB and ARG loads by 2-4 log units. All three biological treatments contributed to the final quality of the effluents, especially in terms of microbiological parameters, with statistically indistinguishable efficiencies between them. These results show the importance of rural WWTPs in improving the water quality of urban effluents while reducing microbiological risk and the spread of antibiotic resistance into the environment. The study demonstrates the utility of a noncentralized, self-managed wastewater treatment scheme that can be implemented in many sparsely populated areas around the world.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Fate of antibiotics, antibiotic-resistant bacteria, and cell-free antibiotic-resistant genes in full-scale membrane bioreactor wastewater treatment plants
    Wang, Shuo
    Ma, Xinxin
    Liu, Yalan
    Yi, Xuesong
    Du, Guocheng
    Li, Ji
    BIORESOURCE TECHNOLOGY, 2020, 302
  • [2] Characteristics of Antibiotic Resistance Genes and Antibiotic-Resistant Bacteria in Full-Scale Drinking Water Treatment System Using Metagenomics and Culturing
    Gu, Qihui
    Sun, Ming
    Lin, Tao
    Zhang, Youxiong
    Wei, Xianhu
    Wu, Shi
    Zhang, Shuhong
    Pang, Rui
    Wang, Juan
    Ding, Yu
    Liu, Zhenjie
    Chen, Ling
    Chen, Wei
    Lin, Xiuhua
    Zhang, Jumei
    Chen, Moutong
    Xue, Liang
    Wu, Qingping
    FRONTIERS IN MICROBIOLOGY, 2022, 12
  • [3] An evaluation of conventional and nature-based technologies for controlling antibiotic-resistant bacteria and antibiotic-resistant genes in wastewater treatment plants
    Hazra, Moushumi
    Watts, Joy E. M.
    Williams, John B.
    Joshi, Himanshu
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 917
  • [4] Fate of antibiotic-resistant bacteria and antibiotic resistance genes in the electrokinetic treatment of antibiotic-polluted soil
    Li, Hongna
    Li, Binxu
    Ma, Jinlian
    Ye, Jing
    Guo, Ping
    Li, Lianfang
    CHEMICAL ENGINEERING JOURNAL, 2018, 337 : 584 - 594
  • [5] Investigation of Antibiotic-Resistant Bacterial Communities and Antibiotic-Resistant Genes in Wastewater Treatment Plants: Removal of Antibiotic-Resistant Genes by the BBR Process
    Zi-fan Weng
    Yu-qin He
    Guo-xiang Li
    Xiao-tong Wu
    Yi Dai
    Peng Bao
    Bulletin of Environmental Contamination and Toxicology, 2022, 108 : 284 - 291
  • [6] Investigation of Antibiotic-Resistant Bacterial Communities and Antibiotic-Resistant Genes in Wastewater Treatment Plants: Removal of Antibiotic-Resistant Genes by the BBR Process
    Weng, Zi-fan
    He, Yu-qin
    Li, Guo-xiang
    Wu, Xiao-tong
    Dai, Yi
    Bao, Peng
    BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 2022, 108 (02) : 284 - 291
  • [7] Antibiotic-resistant genes and antibiotic-resistant bacteria in the effluent of urban residential areas, hospitals, and a municipal wastewater treatment plant system
    Li, Jianan
    Cheng, Weixiao
    Xu, Like
    Strong, P. J.
    Chen, Hong
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2015, 22 (06) : 4587 - 4596
  • [8] The Fate and Occurrence of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes during Advanced Wastewater Treatment and Disinfection: A Review
    Kalli, Maria
    Noutsopoulos, Constantinos
    Mamais, Daniel
    WATER, 2023, 15 (11)
  • [9] Treatment enhances the prevalence of antibiotic-resistant bacteria and antibiotic resistance genes in the wastewater of Sri Lanka, and India
    Kumar, Manish
    Ram, Bhagwana
    Sewwandi, Himaya
    Sulfikar
    Honda, Ryo
    Chaminda, Tushara
    ENVIRONMENTAL RESEARCH, 2020, 183
  • [10] Detection of antibiotic-resistant bacteria and their resistance genes from houseflies
    Akter, Sharmin
    Sabuj, Abdullah Al Momen
    Haque, Zobayda Farzana
    Rahman, Md Tanvir
    Kafi, Md Abdul
    Saha, Sukumar
    VETERINARY WORLD, 2020, 13 (02) : 266 - 274