Decoding mean field games from population and environment observations by Gaussian processes

被引:2
作者
Guo, Jinyan [1 ,2 ]
Mou, Chenchen [3 ]
Yang, Xianjin [4 ]
Zhou, Chao [1 ,2 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore, Singapore
[2] Natl Univ Singapore, Risk Management Inst, Singapore, Singapore
[3] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[4] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
关键词
Gaussian processes; Mean field games; Inverse problems; MCKEAN-VLASOV SYSTEMS; INVARIANCE-PRINCIPLE; 1ST-ORDER;
D O I
10.1016/j.jcp.2024.112978
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a Gaussian Process (GP) framework, a non -parametric technique widely acknowledged for regression and classification tasks, to address inverse problems in mean field games (MFGs). By leveraging GPs, we aim to recover agents' strategic actions and the environment's configurations from partial and noisy observations of the population of agents and the setup of the environment. Our method is a probabilistic tool to infer the behaviors of agents in MFGs from data in scenarios where the comprehensive dataset is either inaccessible or contaminated by noises.
引用
收藏
页数:22
相关论文
共 56 条
  • [1] Mean Field Games and Applications: Numerical Aspects
    Achdou, Yves
    Lauriere, Mathieu
    [J]. MEAN FIELD GAMES, 2020, 2281 : 249 - 307
  • [2] ITERATIVE STRATEGIES FOR SOLVING LINEARIZED DISCRETE MEAN FIELD GAMES SYSTEMS
    Achdou, Yves
    Perez, Victor
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2012, 7 (02) : 197 - 217
  • [3] MEAN FIELD GAMES: NUMERICAL METHODS
    Achdou, Yves
    Capuzzo-Dolcetta, Italo
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (03) : 1136 - 1162
  • [4] Kernels for Vector-Valued Functions: A Review
    Alvarez, Mauricio A.
    Rosasco, Lorenzo
    Lawrence, Neil D.
    [J]. FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2012, 4 (03): : 195 - 266
  • [5] Briceno-Arias L., 2019, ESAIM: Proceedings and Surveys, V65, P331, DOI 10.1051/proc/201965330
  • [6] PROXIMAL METHODS FOR STATIONARY MEAN FIELD GAMES WITH LOCAL COUPLINGS
    Briceno-Arias, L. M.
    Kalise, D.
    Silva, F. J.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (02) : 801 - 836
  • [7] Long-Time Behavior of First-Order Mean Field Games on Euclidean Space
    Cannarsa, Piermarco
    Cheng, Wei
    Mendico, Cristian
    Wang, Kaizhi
    [J]. DYNAMIC GAMES AND APPLICATIONS, 2020, 10 (02) : 361 - 390
  • [8] Cardaliaguet P., 2013, NOTES MEAN FIELD GAM
  • [9] LONG TIME AVERAGE OF MEAN FIELD GAMES
    Cardaliaguet, Pierre
    Lasry, Jean-Michel
    Lions, Pierre-Louis
    Porretta, Alessio
    [J]. NETWORKS AND HETEROGENEOUS MEDIA, 2012, 7 (02) : 279 - 301
  • [10] CONVERGENCE ANALYSIS OF MACHINE LEARNING ALGORITHMS FOR THE NUMERICAL SOLUTION OF MEAN FIELD CONTROL AND GAMES: II-THE FINITE HORIZON CASE
    Carmona, Rene
    Lauriere, Mathieu
    [J]. ANNALS OF APPLIED PROBABILITY, 2022, 32 (06) : 4065 - 4105