Estimation of PM2.5 Concentrations over Beijing with MODIS AODs Using an Artificial Neural Network

被引:8
作者
Lyu, Hao [1 ]
Dai, Tie [1 ,2 ,3 ]
Zheng, Youfei [1 ]
Shi, Guangyu [2 ,3 ]
Nakajima, Teruyuki [4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Environm Sci & Engn, Jiangsu Key Lab Atmospher Environm Monitoring & P, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing, Jiangsu, Peoples R China
[3] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Numer Modeling Atmospher Sci & Geop, Beijing, Peoples R China
[4] Japan Aerosp Explorat Agcy, Earth Observat Res Ctr, Tsukuba, Ibaraki, Japan
来源
SOLA | 2018年 / 14卷
基金
国家重点研发计划;
关键词
AEROSOL OPTICAL-THICKNESS; AIR-POLLUTION; PARTICULATE MATTER; URBAN AIR; LAND; MODEL; HEALTH; CHINA; AREA;
D O I
10.2151/sola.2018-003
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Three years of Aerosol Optical Depths (AODs) retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) and five meteorological parameters from the NCEP FNL reanalysis data, are used to generate an Artificial Neutral Network (ANN)-based nonlinear model for estimating the surface PM2.5 concentrations over Beijing. To increase the number of both the training and forecasting samples for better training results and to guarantee the continuity and representativeness of the samples, the MODIS AODs are gridded with seasonally dependent windows sizes. The past PM2.5 concentrations simulated by the ANN model are contrasted with the real observations for six years from 2008 to 2013. The results indicate that the ANN model can effectively simulate the surface PM2.5 concentrations, and the mean bias, correlation coefficient, and the root mean square error between these data are -16.10, 0.73, and 55.43, respectively. This study also demonstrates that the Planetary Boundary Layer Height (PBLH) is the most important meteorological factor in constructing the ANN model. Compared to the linear regression model using only AOD, the correlation coefficient can be increased from 0.68 to 0.76 with the ANN model by using both the AOD and the PBLH data.
引用
收藏
页码:14 / 18
页数:5
相关论文
共 27 条
[1]  
[Anonymous], 2013, SPSS Statistics for Windows Version 22.0
[2]   Investigating microclimatic influences on ozone injury in clover (Trifolium subterraneum) using artificial neural networks [J].
Balls, GR ;
PalmerBrown, D ;
Sanders, GE .
NEW PHYTOLOGIST, 1996, 132 (02) :271-280
[3]   Air pollution and health [J].
Brunekreef, B ;
Holgate, ST .
LANCET, 2002, 360 (9341) :1233-1242
[4]   Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS) [J].
Chu, DA ;
Kaufman, YJ ;
Zibordi, G ;
Chern, JD ;
Mao, J ;
Li, CC ;
Holben, BN .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D21)
[5]  
Demir G, 2010, J ENVIRON PROT ECOL, V11, P1163
[6]   Improved algorithm for MODIS satellite retrievals of aerosol optical depths over western North America [J].
Drury, Easan ;
Jacob, Daniel J. ;
Wang, Jun ;
Spurr, Robert J. D. ;
Chance, Kelly .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D16)
[7]   Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation [J].
Feng, Xiao ;
Li, Qi ;
Zhu, Yajie ;
Hou, Junxiong ;
Jin, Lingyan ;
Wang, Jingjie .
ATMOSPHERIC ENVIRONMENT, 2015, 107 :118-128
[8]   FORECASTING WITH NEURAL NETWORKS - AN APPLICATION USING BANKRUPTCY DATA [J].
FLETCHER, D ;
GOSS, E .
INFORMATION & MANAGEMENT, 1993, 24 (03) :159-167
[9]   Health impacts and economic losses assessment of the 2013 severe haze event in Beijing area [J].
Gao, Meng ;
Guttikunda, Sarath K. ;
Carmichael, Gregory R. ;
Wang, Yuesi ;
Liu, Zirui ;
Stanier, Charles O. ;
Saide, Pablo E. ;
Yu, Man .
SCIENCE OF THE TOTAL ENVIRONMENT, 2015, 511 :553-561
[10]   Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London [J].
Gardner, MW ;
Dorling, SR .
ATMOSPHERIC ENVIRONMENT, 1999, 33 (05) :709-719