Evolutionary Feature Selection for Time-Series Forecasting

被引:1
|
作者
Linares-Barrera, M. L. [1 ]
Jimenez-Navarro, M. J. [1 ]
Brito, I. Sofia [2 ,3 ]
Riquelme, J. C. [1 ]
Martinez-Ballesteros, M. [1 ]
机构
[1] Univ Seville, Dept Comp Languages & Syst, Seville, Spain
[2] Inst Politecn Beja, Escola Super Tecnol & Gestao, Beja, Portugal
[3] Ctr Technol & Syst UNINOVA, Caparica, Portugal
来源
39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024 | 2024年
关键词
Machine Learning; Feature Selection; Genetic Algorithm; Regression; Time-Series Forecasting;
D O I
10.1145/3605098.3636191
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In machine learning, feature selection is crucial for pinpointing the key subset of features that enhances interpretability and preserves or boosts the model's original performance. Filter methods, which assess features using statistical metrics, are particularly notable. Recently, a novel metric called Conditional Dependence Coefficient has been proposed to measure the dependence between subsets of variables. This paper introduces a novel filter feature selection method that integrates the Conditional Dependence Coefficient metric with an evolutionary algorithm to find the optimal feature subset. This approach combines the adaptability of genetic algorithms with the strength of an intuitive metric. Unlike many filter-based methods, our technique does not rely on parameters directly linked to the number of features (like thresholds). Moreover, it evaluates the collective merit of feature subsets rather than individual significance. We conducted tests on six different multivariate time-series datasets to address the forecasting challenge, determining the relevant lags. Considering no selection as baseline, experimental results indicate that our approach is competitive in terms of efficacy while demonstrating a reduction in the number of features selected.
引用
收藏
页码:395 / 397
页数:3
相关论文
共 50 条
  • [12] Unsupervised feature selection for sensor time-series in pervasive computing applications
    Davide Bacciu
    Neural Computing and Applications, 2016, 27 : 1077 - 1091
  • [13] Multi-surrogate assisted multi-objective evolutionary algorithms for feature selection in regression and classification problems with time series data
    Espinosa, Raquel
    Jimenez, Fernando
    Palma, Jose
    INFORMATION SCIENCES, 2023, 622 : 1064 - 1091
  • [14] Feature Selection for Interval Forecasting of Electricity Demand Time Series Data
    Rana, Mashud
    Koprinska, Irena
    Khosravi, Abbas
    ARTIFICIAL NEURAL NETWORKS, 2015, : 445 - 462
  • [15] A Framework for Imbalanced Time-Series Forecasting
    Silvestrin, Luis P.
    Pantiskas, Leonardos
    Hoogendoorn, Mark
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE (LOD 2021), PT I, 2022, 13163 : 250 - 264
  • [16] A clustering model for time-series forecasting
    Coric, Rebeka
    Dumic, Mateja
    Jelic, Slobodan
    2019 42ND INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2019, : 1105 - 1109
  • [17] FORECASTING GROWTH WITH TIME-SERIES MODELS
    PENA, D
    JOURNAL OF FORECASTING, 1995, 14 (02) : 97 - 105
  • [18] Evolutionary Feature Selection: A Novel Wrapper Feature Selection Architecture Based on Evolutionary Strategies
    Dubey, Aaryan
    Inoue, Alexandre Hoppe
    Fernandes Birmann, Pedro Terra
    da Silva, Sammuel Ramos
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'22), 2022, : 359 - 366
  • [19] Time-Lag Selection for Time-Series Forecasting Using Neural Network and Heuristic Algorithm
    Surakhi, Ola
    Zaidan, Martha A.
    Fung, Pak Lun
    Hossein Motlagh, Naser
    Serhan, Sami
    AlKhanafseh, Mohammad
    Ghoniem, Rania M.
    Hussein, Tareq
    ELECTRONICS, 2021, 10 (20)
  • [20] Multi-objective evolutionary feature selection for online sales forecasting
    Jimenez, F.
    Sanchez, G.
    Garcia, J. M.
    Sciavicco, G.
    Miralles, L.
    NEUROCOMPUTING, 2017, 234 : 75 - 92