Symplectic Tate homology

被引:7
作者
Albers, Peter [1 ]
Cieliebak, Kai [2 ]
Frauenfelder, Urs [3 ]
机构
[1] Univ Munster, Mathemat Inst, Einsteinstr 62, D-48149 Munster, Germany
[2] Univ Augsburg, Mathemat Inst, Univ Str 14, D-86159 Augsburg, Germany
[3] Seoul Natl Univ, Dept Math & Res, Inst Math, Seoul, South Korea
关键词
FLOER HOMOLOGY;
D O I
10.1112/plms/pdv065
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a Liouville domainW satisfying c(1)(W) = 0, we propose in this note two versions of symplectic Tate homology, <(H)under right arrow>(T) under left arrow-(W) and (H) under left arrow(T) under left arrow (W), which are related by a canonical map kappa: <(H)under right arrow>(T) under left arrow -> -(H) under left arrow(T) under left arrow (W). Our geometric approach to Tate homology uses the moduli space of finite energy gradient flow lines of the Rabinowitz action functional for a circle in the complex plane as a classifying space for S-1-equivariant Tate homology. For rational coefficients the symplectic Tate homology <(H)under right arrow>(T) under left arrow-(W; Q) has the fixed point property and is therefore isomorphic to H(W; Q)circle times(Q) Q[u, u(-1)], where Q[u, u(-1)] is the ring of Laurent polynomials over the rationals. Using a deep theorem of Goodwillie, we construct examples of Liouville domains where the canonical map. is not surjective and examples where it is not injective.
引用
收藏
页码:169 / 205
页数:37
相关论文
共 47 条
  • [1] On the Floer homology of cotangent bundles
    Abbondandolo, A
    Schwarz, M
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (02) : 254 - 316
  • [2] Abouzaid M., 2013, ARXIV13123354
  • [3] ABRAHAM R., 1978, Foundations of Mechanics
  • [4] [Anonymous], 2009, Basic algebra
  • [5] [Anonymous], 1952, FDN ALGEBRAIC TOPOLO, DOI DOI 10.1515/9781400877492
  • [6] [Anonymous], 1989, Algebraic topology (Evanston, IL, 1988)
  • [7] THE MOMENT MAP AND EQUIVARIANT CO-HOMOLOGY
    ATIYAH, MF
    BOTT, R
    [J]. TOPOLOGY, 1984, 23 (01) : 1 - 28
  • [8] Bourgeois F., 2012, ARXIV12123731
  • [9] THE GYSIN EXACT SEQUENCE FOR S1-EQUIVARIANT SYMPLECTIC HOMOLOGY
    Bourgeois, Frederic
    Oancea, Alexandru
    [J]. JOURNAL OF TOPOLOGY AND ANALYSIS, 2013, 5 (04) : 361 - 407
  • [10] SYMPLECTIC HOMOLOGY, AUTONOMOUS HAMILTONIANS, AND MORSE-BOTT MODULI SPACES
    Bourgeois, Frederic
    Oancea, Alexandru
    [J]. DUKE MATHEMATICAL JOURNAL, 2009, 146 (01) : 71 - 174