MLSea: A Semantic Layer for Discoverable Machine Learning

被引:2
作者
Dasoulas, Ioannis [1 ]
Yang, Duo [1 ]
Dimou, Anastasia [1 ]
机构
[1] Katholieke Univ Leuven, LeuvenAI Flanders Make KULeuven, Leuven, Belgium
来源
SEMANTIC WEB, PT II, ESWC 2024 | 2024年 / 14665卷
关键词
Machine Learning; Ontologies; Knowledge Graphs; Semantic Web; Big Data Management; ONTOLOGY; ALGORITHMS;
D O I
10.1007/978-3-031-60635-9_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the Machine Learning (ML) field rapidly evolving, ML pipelines continuously grow in numbers, complexity and components. Online platforms (e.g., OpenML, Kaggle) aim to gather and disseminate ML experiments. However, available knowledge is fragmented with each platform representing distinct components of the ML process or intersecting components but in different ways. To address this problem, we leverage semantic web technologies to model and integrate ML datasets, experiments, software and scientific works into MLSea, a resource consisting of: (i) MLSO, an ontology that models ML datasets, pipelines and implementations; (ii) MLST, taxonomies with collections of ML knowledge formulated as controlled vocabularies; and (iii) MLSea-KG, an RDF graph containing ML datasets, pipelines, implementations and scientific works from diverse sources. MLSea paves the way for improving the search, explainability and reproducibility of ML pipelines.
引用
收藏
页码:178 / 198
页数:21
相关论文
共 73 条
  • [1] Reinforcement Learning Algorithms: An Overview and Classification
    AlMahamid, Fadi
    Grolinger, Katarina
    [J]. 2021 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2021,
  • [2] [Anonymous], Hugging Face: Hugging Face-The AI community building the future
  • [3] [Anonymous], Papers With Code. Papers with code - movielens 100k benchmark (recommendation systems)
  • [4] Morph-KGC: Scalable knowledge graph materialization with mapping partitions
    Arenas-Guerrero, Julian
    Chaves-Fraga, David
    Toledo, Jhon
    Perez, Maria S.
    Corcho, Oscar
    [J]. SEMANTIC WEB, 2024, 15 (01) : 1 - 20
  • [5] Deep Reinforcement Learning A brief survey
    Arulkumaran, Kai
    Deisenroth, Marc Peter
    Brundage, Miles
    Bharath, Anil Anthony
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (06) : 26 - 38
  • [6] Auer S. etal, 2018, P 8 INT C WEB INT MI, P1
  • [7] Discrete Bayesian Network Classifiers: A Survey
    Bielza, Concha
    Larranaga, Pedro
    [J]. ACM COMPUTING SURVEYS, 2014, 47 (01)
  • [8] Combining Machine Learning and Semantic Web: A Systematic Mapping Study
    Breit, Anna
    Waltersdorfer, Laura
    Ekaputra, Fajar J.
    Sabou, Marta
    Ekelhart, Andreas
    Iana, Andreea
    Paulheim, Heiko
    Portisch, Jan
    Revenko, Artem
    Ten Teije, Annette
    Van Harmelen, Frank
    [J]. ACM COMPUTING SURVEYS, 2023, 55 (14S)
  • [9] Brickley D., 2014, FOAF Vocabulary Speci cation
  • [10] Leveraging Knowledge Graphs and Deep Learning for automatic art analysis
    Castellano G.
    Digeno V.
    Sansaro G.
    Vessio G.
    [J]. Knowledge-Based Systems, 2022, 248