Inverse matrix estimations by iterative methods with weight functions and their stability analysis

被引:2
|
作者
Cordero, Alicia [1 ]
Segura, Elaine [2 ]
Torregrosa, Juan R. [1 ]
Vassileva, Maria P. [3 ]
机构
[1] Univ Politecn Valencia, Multidisciplinary Inst Math, Camino Vera S-N, Valencia 46022, Spain
[2] Univ Autonoma Santo Domingo, Av Alma Mater, Santo Domingo 10105, Dominican Rep
[3] Inst Tecnol Santo Domingo, Av Proceres, Santo Domingo 10801, Dominican Rep
关键词
Matrix equations; Iterative methods; Order of convergence; Real discrete dynamics; ORDER;
D O I
10.1016/j.aml.2024.109122
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct a parametric family of iterative methods to compute the inverse of a nonsingular matrix. This class is free of inverse operators. We prove the third -order of convergence under some conditions involving the parameter of the family. Moreover, a dynamical analysis is made for the first time to a matrix iterative method, finding intervals of stability, that include but are wider than those found in the convergence analysis. Numerical tests on large random matrices confirm the results found.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Digit Stability Inference for Iterative Methods Using Redundant Number Representation
    Li, He
    McInerney, Ian
    Davis, James J.
    Constantinides, George A.
    IEEE TRANSACTIONS ON COMPUTERS, 2021, 70 (07) : 1074 - 1080
  • [42] Dynamics and Stability on a Family of Optimal Fourth-Order Iterative Methods
    Cordero, Alicia
    Leonardo Sepulveda, Miguel A.
    Torregrosa, Juan R.
    ALGORITHMS, 2022, 15 (10)
  • [43] DOMAIN-DECOMPOSITION-TYPE METHODS FOR COMPUTING THE DIAGONAL OF A MATRIX INVERSE
    Tang, Jok M.
    Saad, Yousef
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (05) : 2823 - 2847
  • [44] Stability of a fourth order bi-parametric family of iterative methods
    Cordero, Alicia
    Maimo, Javier G.
    Torregrosa, Juan R.
    Vassileva, Maria P.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 312 : 94 - 102
  • [45] Iterative methods for nonlinear matrix equations X+A☆X-a=I
    EI-Sayed, SM
    Petkov, MG
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 403 : 45 - 52
  • [46] HIGHER-ORDER ITERATIVE METHODS FOR APPROXIMATING ZEROS OF ANALYTIC-FUNCTIONS
    PETKOVIC, M
    HERCEG, D
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 39 (02) : 243 - 258
  • [47] Convergence of a Family of Methods with Symmetric, Antisymmetric Parameters and Weight Functions
    Behl, Ramandeep
    Argyros, Ioannis K.
    SYMMETRY-BASEL, 2024, 16 (09):
  • [48] On a new family of high-order iterative methods for the matrix pth root
    Amat, S.
    Ezquerro, J. A.
    Hernandez-Veron, M. A.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2015, 22 (04) : 585 - 595
  • [49] New fourth- and sixth-order classes of iterative methods for solving systems of nonlinear equations and their stability analysis
    Munish Kansal
    Alicia Cordero
    Sonia Bhalla
    Juan R. Torregrosa
    Numerical Algorithms, 2021, 87 : 1017 - 1060
  • [50] New fourth- and sixth-order classes of iterative methods for solving systems of nonlinear equations and their stability analysis
    Kansal, Munish
    Cordero, Alicia
    Bhalla, Sonia
    Torregrosa, Juan R.
    NUMERICAL ALGORITHMS, 2021, 87 (03) : 1017 - 1060