Earth-Abundant Kaolinite Nanoplatelet Gel Electrolytes for Solid-State Lithium Metal Batteries

被引:3
作者
Thomas, Cory M. [1 ]
Zeng, Davy [1 ]
Huang, Hsien Cheng [1 ]
Pham, Thang [1 ]
Torres-Castanedo, Carlos G. [1 ]
Bedzyk, Michael J. [1 ,2 ,3 ]
Dravid, Vinayak P. [1 ]
Hersam, Mark C. [1 ,4 ,5 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
[3] Northwestern Univ, Appl Phys Program, Evanston, IL 60208 USA
[4] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[5] Northwestern Univ, Dept Elect & Comp Engn, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
clay nanocomposite; succinonitrile; liquid-phaseexfoliation; solid-state battery; sustainability; SUCCINONITRILE-BASED ELECTROLYTE; POLYMER ELECTROLYTE; IONIC-CONDUCTIVITY; ELECTROCHEMICAL PROPERTIES; NANO-CLAY; PLASTICIZER; STABILITY; MEMBRANES; PHASE;
D O I
10.1021/acsami.4c03997
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium-ion batteries are the leading energy storage technology for portable electronics and vehicle electrification. However, demands for enhanced energy density, safety, and scalability necessitate solid-state alternatives to traditional liquid electrolytes. Moreover, the rapidly increasing utilization of lithium-ion batteries further requires that next-generation electrolytes are derived from earth-abundant raw materials in order to minimize supply chain and environmental concerns. Toward these ends, clay-based nanocomposite electrolytes hold significant promise since they utilize earth-abundant materials that possess superlative mechanical, thermal, and electrochemical stability, which suggests their compatibility with energy-dense lithium metal anodes. Despite these advantages, nanocomposite electrolytes rarely employ kaolinite, the most abundant variety of clay, due to strong interlayer interactions that have historically precluded efficient exfoliation of kaolinite. Overcoming this limitation, here we demonstrate a scalable liquid-phase exfoliation process that produces kaolinite nanoplatelets (KNPs) with high gravimetric surface area, thus enabling the formation of mechanically robust nanocomposites. In particular, KNPs are combined with a succinonitrile (SN) liquid electrolyte to form a nanocomposite gel electrolyte with high room-temperature ionic conductivity (1 mS cm(-1)), stiff storage modulus (>10 MPa), wide electrochemical stability window (4.5 V vs Li/Li+), and excellent thermal stability (>100 degrees C). The resulting KNP-SN nanocomposite gel electrolyte is shown to be suitable for high-rate rechargeable lithium metal batteries that employ high-voltage LiNi0.8Co0.15Al0.05O2 (NCA) cathodes. While the primary focus here is on solid-state batteries, our strategy for kaolinite liquid-phase exfoliation can serve as a scalable manufacturing platform for a wide variety of other kaolinite-based nanocomposite applications.
引用
收藏
页码:34913 / 34922
页数:10
相关论文
共 50 条
  • [41] A Ceramic Rich Quaternary Composite Solid-State Electrolyte for Solid-State Lithium Metal Batteries
    Al-Salih, Hilal
    Cui, Mengyang
    Yim, Chae-Ho
    Sadighi, Zoya
    Yan, Shuo
    Karkar, Zouina
    Goward, Gillian R.
    Baranova, Elena A.
    Abu-Lebdeh, Yaser
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (08)
  • [42] Recent Progress of Polymer Electrolytes for Solid-State Lithium Batteries
    Hu, Yilin
    Xie, Xiaoxin
    Li, Wei
    Huang, Qiu
    Huang, Hao
    Hao, Shu-Meng
    Fan, Li-Zhen
    Zhou, Weidong
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (04) : 1253 - 1277
  • [43] Solid Electrolytes and Solid-State Batteries
    Takada, Kazunori
    ELECTROCHEMICAL STORAGE MATERIALS: SUPPLY, PROCESSING, RECYCLING AND MODELLING (ESTORM2015), 2016, 1765
  • [44] Recent Progress of Hybrid Solid-State Electrolytes for Lithium Batteries
    Liu, Xiaoyan
    Li, Xinru
    Li, Hexing
    Wu, Hao Bin
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (69) : 18293 - 18306
  • [45] Solid-State Polymer Electrolytes for Lithium-Ion Batteries
    Karpushkin, E. A.
    Lopatina, L. I.
    Drozhzhin, O. A.
    Sergeyev, V. G.
    MOSCOW UNIVERSITY CHEMISTRY BULLETIN, 2024, 79 (06) : 420 - 428
  • [46] Composite solid-state electrolytes for all solid-state lithium batteries: progress, challenges and outlook
    Wang, Senhao
    La Monaca, Andrea
    Demopoulos, George P.
    ENERGY ADVANCES, 2025, 4 (01): : 11 - 36
  • [47] Lithium phosphosulfide electrolytes for solid-state batteries: Part II
    Lu, Xin
    Tsai, Chih-Long
    Yu, Shicheng
    He, Hongying
    Camara, Osmane
    Tempel, Hermann
    Liu, Zigeng
    Windmueller, Anna
    Alekseev, Evgeny, V
    Koecher, Simone
    Basak, Shibabrata
    Lu, Li
    Eichel, Ruediger A.
    Kungl, Hans
    FUNCTIONAL MATERIALS LETTERS, 2022, 15 (07N08)
  • [48] Borohydride-based Solid-state Electrolytes for Lithium Batteries
    El Kharbachi, A.
    Sorby, M. H.
    Nygard, M. M.
    Hauback, B. C.
    PROCEEDINGS OF 2019 7TH INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC), 2019, : 750 - 753
  • [49] Research Progress on the Composite Methods of Composite Electrolytes for Solid-State Lithium Batteries
    Wang, Xu
    Huang, Sipeng
    Peng, Yiting
    Min, Yulin
    Xu, Qunjie
    CHEMSUSCHEM, 2024, 17 (14)
  • [50] Hydroxyapatite functionalization of solid polymer electrolytes for high-conductivity solid-state lithium-ion batteries
    Liang, Y.
    Liu, Y.
    Chen, D.
    Dong, L.
    Guang, Z.
    Liu, J.
    Yuan, B.
    Yang, M.
    Dong, Y.
    Li, Q.
    Yang, C.
    Tang, D.
    He, W.
    MATERIALS TODAY ENERGY, 2021, 20