Vibration-based structural health monitoring of bridges based on a new unsupervised machine learning technique under varying environmental conditions

被引:1
|
作者
Salar, M. [1 ]
Entezami, A. [1 ,2 ]
Sarmadi, H. [2 ]
Behkamal, B. [1 ,3 ]
De Michele, C. [1 ]
Martinelli, L. [1 ]
机构
[1] Politecn Milan, Dept Civil & Environm Engn, Milan, Italy
[2] Ferdowsi Univ Mashhad, Dept Civil Engn, Fac Engn, Mashhad, Razavi Khorasan, Iran
[3] Ferdowsi Univ Mashhad, Dept Comp Engn, Fac Engn, Mashhad, Razavi Khorasan, Iran
来源
CURRENT PERSPECTIVES AND NEW DIRECTIONS IN MECHANICS, MODELLING AND DESIGN OF STRUCTURAL SYSTEMS | 2022年
关键词
Structural health monitoring; early damage detection; bridge structure; environmental variability; unsupervised machine learning; dissimilarity measure; DAMAGE DETECTION; ALGORITHMS;
D O I
10.1201/9781003348443-286
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The most significant steps in vibration-based structural health monitoring (SHM) are to extract reliable damage sensitive features from the responses of structure and to make a decision about the safety and serviceability of the structure using the extracted features. However, in most real-world applications, adverse influences caused by multiple sources of environmental variability conditions such as traffic loading, wind, and, most importantly, temperature variations can mask extracted features and may lead to false positive and/or false negative indications of structural damage. Hence, it is thus fundamentally significant to understand the relationship between extracted features and environmental variations and to investigate the effects of these variations on the damage-related features and damage detection procedure. This article proposes a new hybrid unsupervised machine learning technique for early damage detection of bridge structures, which are always exposed to environmental variability conditions. The proposed method is based on a data dependent dissimilarity measure with the focus on effectively investigating and accurately suppressing the effects of environmental variability conditions from extracted features. The main merit of this method is to enable a machine learning technique to highly reduce the variations caused by environmental factors and increase damage detectability in an unsupervised manner. At last, the effectiveness and robustness of the proposed approach are assessed and verified through the well-known Tianjin-Yonghe Bridge; additionally, the proposed unsupervised machine learning methodology succeeds in early detecting damage under variability of environmental conditions.
引用
收藏
页码:1748 / 1753
页数:6
相关论文
共 50 条
  • [1] A Nonphysics-based Approach for Vibration-based Structural Health Monitoring under Changing Environmental Conditions
    Serker, N. H. M. Kamrujjaman
    Wu, Zhishen
    Li, Suzhen
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2010, 9 (02): : 145 - 158
  • [2] Vibration-Based Support Vector Machine for Structural Health Monitoring
    Pan, Hong
    Azimi, Mohsen
    Gui, Guoqing
    Yan, Fei
    Lin, Zhibin
    EXPERIMENTAL VIBRATION ANALYSIS FOR CIVIL STRUCTURES: TESTING, SENSING, MONITORING, AND CONTROL, 2018, 5 : 167 - 178
  • [3] Vibration-based structural health monitoring under changing environmental conditions using Kalman filtering
    Erazo, Kalil
    Sen, Debarshi
    Nagarajaiah, Satish
    Sun, Limin
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 117 : 1 - 15
  • [4] Unsupervised Learning Methods for Data-Driven Vibration-Based Structural Health Monitoring: A Review
    Eltouny, Kareem
    Gomaa, Mohamed
    Liang, Xiao
    SENSORS, 2023, 23 (06)
  • [5] A vibration-based approach for health monitoring of tie-rods under uncertain environmental conditions
    Luca, F.
    Manzoni, S.
    Cigada, A.
    Frate, L.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 167
  • [6] Vibration-based structural health monitoring using CAE-aided unsupervised deep learning
    Zhang, Minte
    Guo, Tong
    Zhu, Ruizhao
    Zong, Yueran
    Pan, Zhihong
    SMART STRUCTURES AND SYSTEMS, 2022, 30 (06) : 557 - 569
  • [7] Recent vibration-based structural health monitoring on steel bridges: Systematic literature review
    Azhar, Anis Shafiqah
    Kudus, Sakhiah Abdul
    Jamadin, Adiza
    Mustaffa, Nur Kamaliah
    Sugiura, Kunitomo
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (03)
  • [8] Vibration-based structural health monitoring - Concepts and applications
    Fritzen, CP
    DAMAGE ASSESSMENT OF STRUCTURES VI, 2005, 293-294 : 3 - 18
  • [9] Vibration-Based SHM of Railway Bridges Using Machine Learning: The Influence of Temperature on the Health Prediction
    Chalouhi, Elisa Khouri
    Gonzalez, Ignacio
    Gentile, Carmelo
    Karoumi, Raid
    EXPERIMENTAL VIBRATION ANALYSIS FOR CIVIL STRUCTURES: TESTING, SENSING, MONITORING, AND CONTROL, 2018, 5 : 200 - 211
  • [10] Machine Learning Meets Compressed Sensing in Vibration-Based Monitoring
    Zonzini, Federica
    Carbone, Antonio
    Romano, Francesca
    Zauli, Matteo
    De Marchi, Luca
    SENSORS, 2022, 22 (06)