Endpoint boundedness of toroidal pseudo-differential operators

被引:0
作者
Ramla, Benhamoud [1 ]
机构
[1] Zhejiang Normal Univ, Sch Math Sci, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Torus; toroidal pseudo-differential operator; toroidal Hormander symbol; BMO(T-n); CONTINUITY;
D O I
10.1515/math-2024-0023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we prove that the toroidal pseudo-differential operator is bounded from L-infinity(T-n)to BMO(Tn) if the symbol belongs to the toroidal Hormander class Sn(rho-1)/2 rho,delta(TnxZn)S rho, with 0<rho <= 1 and 0 <=delta<1 . As a corollary, we obtain a result of toroidal pseudo-differential operators on L-p when 2<p<infinity 2<p<infinity for symbols in the class S(rho,delta)(m)m(T(n)xZ(n)) with m <= n(rho-1)(1/2-1/p)+npmin{0,rho-delta} .
引用
收藏
页数:12
相关论文
共 27 条
[11]   PSEUDODIFFERENTIAL OPERATORS WITH NONREGULAR SYMBOLS [J].
CHING, CH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1972, 11 (02) :436-&
[12]  
Delgado J., 2013, Oper. Theory Adv. Appl, V231, P103, DOI [10.1007/978-3-0348-0585-86, DOI 10.1007/978-3-0348-0585-86, 10.1007/978-3-0348-0585-8_6]
[13]   LP-BOUNDS FOR PSEUDO-DIFFERENTIAL OPERATORS ON COMPACT LIE GROUPS [J].
Delgado, Julio ;
Ruzhansky, Michael .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2019, 18 (03) :531-559
[14]   Intrinsic pseudo-differential calculi on any compact Lie group [J].
Fischer, Veronique .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (11) :3404-3477
[15]   Some Notes on Endpoint Estimates for Pseudo-differential Operators [J].
Guo, Jingwei ;
Zhu, Xiangrong .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (06)
[16]   PSEUDO-DIFFERENTIAL OPERATORS [J].
HORMANDE.L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1965, 18 (03) :501-&
[17]   L2 CONTINUITY OF PSEUDO-DIFFERENTIAL OPERATORS [J].
HORMANDER, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1971, 24 (04) :529-+
[18]   ON THE L-2 CONTINUITY OF PSEUDODIFFERENTIAL-OPERATORS [J].
HOUNIE, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1986, 11 (07) :765-778
[19]  
Hrmander L., 1967, Pseudo-differential operators and hypoelliptic equations., P138
[20]   Ψ-pseudodifferential operators and estimates for maximal oscillatory integrals [J].
Kenig, Carlos E. ;
Staubach, Wolfgang .
STUDIA MATHEMATICA, 2007, 183 (03) :249-258