Thermal runaway modeling of lithium-ion batteries at different scales: Recent advances and perspectives

被引:12
|
作者
Peng, Rongqi [1 ]
Kong, Depeng [1 ,3 ]
Ping, Ping [2 ,3 ]
Wang, Gongquan [1 ]
Gao, Xinzeng [1 ]
Lv, Hongpeng [1 ]
Zhao, Hengle [1 ]
He, Xu [1 ]
Zhang, Yue [1 ]
Dai, Xinyi [1 ]
机构
[1] China Univ Petr East China, Ctr Offshore Engn & Safety Technol, Qingdao 266580, Peoples R China
[2] China Univ Petr East China, Coll Chem Engn, Qingdao 266580, Peoples R China
[3] China Univ Petr East China, State Key Lab Chem Safety, Qingdao 266580, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium -ion battery; Battery safety; Thermal runaway; Numerical model; Multi-scale modeling; Multiphysics coupling; INTERNAL SHORT-CIRCUIT; EXTERNAL SHORT-CIRCUIT; ACCELERATING RATE CALORIMETRY; DIMETHYL CARBONATE; ELECTRIC VEHICLES; CATHODE MATERIALS; METAL-OXIDE; ELECTROCHEMICAL PROPERTIES; INTERCALATED GRAPHITE; FAILURE MECHANISMS;
D O I
10.1016/j.ensm.2024.103417
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Large-scale application of lithium-ion batteries (LIBs) is limited by the safety concerns induced by thermal runaway (TR). In the field of TR research, numerical simulation, with its low risk and suitable cost, has become a key method to study the characteristics and mechanism of TR in LIBs. Early endeavors in TR modeling mainly concentrated on individual cells or a single scale, which may not completely predict the failure of cells in applications at the system scale, where various physical phenomena can take place simultaneously in a multitude of cells. This paper presents a comprehensive review of TR modeling technologies for LIBs from multi-scale perspectives. Firstly, the mechanism of LIBs' internal heat generation and the modeling process of the reaction kinetics are elucidated at the particle scale. Subsequently, TR triggering mechanisms of LIBs are expounded under various abuse conditions at the cell-scale, and the related models from single-physical to multi-physical fields are introduced. Evolution processes and underlying mechanisms of gas generation, venting, and combustion induced by TR are also analyzed, along with the latest modeling research. For the module scale, three technologies for the TR propagation are introduced, and the modeling studies are reviewed for the prediction of various behaviors affecting TR propagation. Then the discussion is conducted on TR modeling studies for gas diffusion, fire propagation, and gas explosion involved at the system scale. Finally, several strategies have been proposed to accelerate TR modeling technologies to embrace the trend of multi-scale models and multi-physics field coupled models.
引用
收藏
页数:42
相关论文
共 50 条
  • [31] Prevent thermal runaway of lithium-ion batteries with minichannel cooling
    Xu, Jian
    Lan, Chuanjin
    Qiao, Yu
    Ma, Yanbao
    APPLIED THERMAL ENGINEERING, 2017, 110 : 883 - 890
  • [32] Internal pressure variation during the thermal runaway of lithium-ion batteries at different state-of-charge
    Sun, Ye
    Chen, Xiaokun
    Wang, Huaibin
    Xu, Chengshan
    Feng, Xuning
    He, Fenfen
    Huang, Luoxin
    Li, Yang
    Zhang, Yanni
    Deng, Jun
    APPLIED THERMAL ENGINEERING, 2025, 271
  • [33] Time Sequence Map for Interpreting the Thermal Runaway Mechanism of Lithium-Ion Batteries With LiNixCoyMnzO2 Cathode
    Feng, Xuning
    Zheng, Siqi
    He, Xiangming
    Wang, Li
    Wang, Yu
    Ren, Dongsheng
    Ouyang, Minggao
    FRONTIERS IN ENERGY RESEARCH, 2018, 6
  • [34] Recent advances in semiconductor gas sensors for thermal runaway early-warning monitoring of lithium-ion batteries
    Shao, Xingyan
    Zhang, Dongzhi
    Zhou, Lina
    Ding, Zuozhe
    Xiong, Haotian
    Zhang, Hao
    Jia, Peilin
    Zhai, Jieshuo
    Jiao, Gongao
    COORDINATION CHEMISTRY REVIEWS, 2025, 535
  • [35] Reviewing recent progress of liquid electrolyte chemistry for mitigating thermal runaway in lithium-ion batteries
    Liu, Mengchuang
    Zeng, Ziqi
    Wu, Yuanke
    Zhong, Wei
    Lei, Sheng
    Cheng, Shijie
    Wen, Jinyu
    Xie, Jia
    ENERGY STORAGE MATERIALS, 2024, 65
  • [36] An integrated methodology for dynamic risk prediction of thermal runaway in lithium-ion batteries
    Meng, Huixing
    Yang, Qiaoqiao
    Zio, Enrico
    Xing, Jinduo
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 171 : 385 - 395
  • [37] A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries
    Ren, Dongsheng
    Hsu, Hungjen
    Li, Ruihe
    Feng, Xuning
    Guo, Dongxu
    Han, Xuebing
    Lu, Languang
    He, Xiangming
    Gao, Shang
    Hou, Junxian
    Li, Yan
    Wang, Yongling
    Ouyang, Minggao
    ETRANSPORTATION, 2019, 2
  • [38] A study of the thermal runaway of lithium-ion batteries: A Gaussian Process based global sensitivity analysis
    Yeardley, Aaron S.
    Bugryniec, Peter J.
    Milton, Robert A.
    Brown, Solomon F.
    JOURNAL OF POWER SOURCES, 2020, 456
  • [39] Research Progress on Thermal Runaway Warning Methods and Fire Extinguishing Technologies for Lithium-Ion Batteries
    Shi, Peicheng
    Zhu, Hailong
    Dong, Xinlong
    Hai, Bin
    WORLD ELECTRIC VEHICLE JOURNAL, 2025, 16 (02):
  • [40] Effect of mechanical extrusion force on thermal runaway of lithium-ion batteries caused by flat heating
    Bai, Jinlong
    Wang, Zhirong
    Gao, Tianfeng
    Bai, Wei
    Wang, Junling
    JOURNAL OF POWER SOURCES, 2021, 507