Binding Site Programmable Self-Assembly of 3D Hierarchical DNA Origami Nanostructures

被引:4
作者
Wei, Xingfei [1 ]
Chen, Chi [2 ]
Popov, Alexander V. [1 ]
Bathe, Mark [2 ]
Hernandez, Rigoberto [1 ,3 ,4 ]
机构
[1] Johns Hopkins Univ, Dept Chem, Baltimore, MD 21218 USA
[2] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
[3] Johns Hopkins Univ, Dept Chem & Biomol Engn, Baltimore, MD 21218 USA
[4] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
基金
美国国家科学基金会;
关键词
ENVIRONMENTAL INTERFACES; PHYSICAL-CHEMISTRY; BIOTIN; ANALOGS; ENERGY;
D O I
10.1021/acs.jpca.4c02603
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
DNA nanotechnology has broad applications in biomedical drug delivery and programmable materials. Characterization of the self-assembly of DNA origami and quantum dots (QDs) is necessary for the development of new DNA-based nanostructures. We use computation and experiment to show that the self-assembly of 3D hierarchical nanostructures can be controlled by programming the binding site number and their positions on DNA origami. Using biotinylated pentagonal pyramid wireframe DNA origamis and streptavidin capped QDs, we demonstrate that DNA origami with 1 binding site at the outer vertex can assemble multimeric origamis with up to 6 DNA origamis on 1 QD, and DNA origami with 1 binding site at the inner center can only assemble monomeric and dimeric origamis. Meanwhile, the yield percentages of different multimeric origamis are controlled by the QD:DNA-origami stoichiometric mixing ratio. DNA origamis with 2 binding sites at the alpha gamma positions (of the pentagon) make larger nanostructures than those with binding sites at the alpha beta positions. In general, increasing the number of binding sites leads to increases in the nanostructure size. At high DNA origami concentration, the QD number in each cluster becomes the limiting factor for the growth of nanostructures. We find that reducing the QD size can also affect the self-assembly because of the reduced access to the binding sites from more densely packed origamis.
引用
收藏
页码:4999 / 5008
页数:10
相关论文
共 67 条
[1]   Autonomous Computing Materials [J].
Bathe, Mark ;
Hernandez, Rigoberto ;
Komiyama, Takaki ;
Machiraju, Raghu ;
Neogi, Sanghamitra .
ACS NANO, 2021, 15 (03) :3586-3592
[2]   DNA Nanotechnology: A foundation for Programmable Nanoscale Materials [J].
Bathe, Mark ;
Rothemund, Paul W. K. .
MRS BULLETIN, 2017, 42 (12) :882-888
[3]   Computer-Aided Production of Scaffolded DNA Nanostructures from Flat Sheet Meshes [J].
Benson, Erik ;
Mohammed, Abdulmelik ;
Bosco, Alessandro ;
Teixeira, Ana I. ;
Orponen, Pekka ;
Hogberg, Bjorn .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (31) :8869-8872
[4]   DNA rendering of polyhedral meshes at the nanoscale [J].
Benson, Erik ;
Mohammed, Abdulmelik ;
Gardell, Johan ;
Masich, Sergej ;
Czeizler, Eugen ;
Orponen, Pekka ;
Hogberg, Bjorn .
NATURE, 2015, 523 (7561) :441-U139
[5]   Hints of Growth Mechanism Left in Supercrystals [J].
Calcaterra, Heather A. ;
Zheng, Cindy Y. ;
Seifert, Soenke ;
Yao, Yudong ;
Jiang, Yi ;
Mirkin, Chad A. ;
Deng, Junjing ;
Lee, Byeongdu .
ACS NANO, 2023, 17 (16) :15999-16007
[6]   Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors [J].
Caswell, KK ;
Wilson, JN ;
Bunz, UHF ;
Murphy, CJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (46) :13914-13915
[7]   Solving mazes with single-molecule DNA navigators [J].
Chao, Jie ;
Wang, Jianbang ;
Wang, Fei ;
Ouyang, Xiangyuan ;
Kopperger, Enzo ;
Liu, Huajie ;
Li, Qian ;
Shi, Jiye ;
Wang, Lihua ;
Hu, Jun ;
Wang, Lianhui ;
Huang, Wei ;
Simmel, Friedrich C. ;
Fan, Chunhai .
NATURE MATERIALS, 2019, 18 (03) :273-+
[8]   Ultrafast dense DNA functionalization of quantum dots and rods for scalable 2D array fabrication with nanoscale precision [J].
Chen, Chi ;
Luo, Xin ;
Kaplan, Alexander E. K. ;
Bawendi, Moungi G. ;
Macfarlane, Robert J. ;
Bathe, Mark .
SCIENCE ADVANCES, 2023, 9 (32)
[9]   Nanoscale 3D spatial addressing and valence control of quantum dots using wireframe DNA origami [J].
Chen, Chi ;
Wei, Xingfei ;
Parsons, Molly F. ;
Guo, Jiajia ;
Banal, James L. ;
Zhao, Yinong ;
Scott, Madelyn N. ;
Schlau-Cohen, Gabriela S. ;
Hernandez, Rigoberto ;
Bathe, Mark .
NATURE COMMUNICATIONS, 2022, 13 (01)
[10]   Titanium Dioxide Photocatalysis in Atmospheric Chemistry [J].
Chen, Haihan ;
Nanayakkara, Charith E. ;
Grassian, Vicki H. .
CHEMICAL REVIEWS, 2012, 112 (11) :5919-5948