Postselected Quantum Hypothesis Testing

被引:3
作者
Regula, Bartosz [1 ,2 ,3 ]
Lami, Ludovico [4 ,5 ,6 ,7 ]
Wilde, Mark M. [8 ]
机构
[1] Univ Tokyo, Grad Sch Sci, Dept Phys, Bunkyo Ku, Tokyo 130033, Japan
[2] RIKEN Cluster Pioneering Res CPR, Wako, Saitama 3510198, Japan
[3] RIKEN Ctr Quantum Comp RQC, Wako, Saitama 3510198, Japan
[4] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany
[5] Univ Ulm, IQST, D-89069 Ulm, Germany
[6] Univ Amsterdam, Korteweg deVries Inst Math, QuSoft, NL-1098 XH Amsterdam, Netherlands
[7] Univ Amsterdam, Inst Theoret Phys, NL-1098 XH Amsterdam, Netherlands
[8] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14850 USA
基金
日本学术振兴会;
关键词
Testing; Quantum state; Protocols; Entropy; Task analysis; Quantum channels; Measurement uncertainty; Hypothesis testing; quantum channel discrimination; quantum state discrimination; relative entropies; TENSOR-PRODUCTS; STRONG CONVERSE; STEINS LEMMA; DISTINGUISHABILITY; DISCRIMINATION; DIFFERENTIATE; ASYMPTOTICS; INFORMATION; ENTROPIES; CHANNELS;
D O I
10.1109/TIT.2023.3299870
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study a variant of quantum hypothesis testing wherein an additional 'inconclusive' measurement outcome is added, allowing one to abstain from attempting to discriminate the hypotheses. The error probabilities are then conditioned on a successful attempt, with inconclusive trials disregarded. We completely characterise this task in both the single-shot and asymptotic regimes, providing exact formulas for the optimal error probabilities. In particular, we prove that the asymptotic error exponent of discriminating any two quantum states rho and $\sigma $ is given by the Hilbert projective metric D-max(rho || sigma) + D-max( sigma || rho) in asymmetric hypothesis testing, and by the Thompson metricmax { D-max(rho || sigma ), D-max(sigma | rho ) } in symmetric hypothesis testing. This endows these two quantities with fundamental operational interpretations in quantum state discrimination. Our findings extend to composite hypothesis testing, where we show that the asymmetric error exponent with respect to any convex set of density matrices is given by a regularisation of the Hilbert projective metric. We apply our results also to quantum channels, showing that no advantage is gained by employing adaptive or even more general discrimination schemes over parallel ones, in both the asymmetric and symmetric settings. Our state discrimination results make use of no properties specific to quantum mechanics and are also valid in general probabilistic theories.
引用
收藏
页码:3453 / 3469
页数:17
相关论文
共 103 条
[1]   Quantum computing, postselection, and probabilistic polynomial-time [J].
Aaronson, S .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 461 (2063) :3473-3482
[2]   HOW THE RESULT OF A MEASUREMENT OF A COMPONENT OF THE SPIN OF A SPIN-1/2 PARTICLE CAN TURN OUT TO BE 100 [J].
AHARONOV, Y ;
ALBERT, DZ ;
VAIDMAN, L .
PHYSICAL REVIEW LETTERS, 1988, 60 (14) :1351-1354
[3]   Quantum advantage in postselected metrology [J].
Arvidsson-Shukur, David R. M. ;
Halpern, Nicole Yunger ;
Lepage, Hugo, V ;
Lasek, Aleksander A. ;
Barnes, Crispin H. W. ;
Lloyd, Seth .
NATURE COMMUNICATIONS, 2020, 11 (01)
[4]   Entanglement and Superposition Are Equivalent Concepts in Any Physical Theory [J].
Aubrun, Guillaume ;
Lami, Ludovico ;
Palazuelos, Carlos ;
Plavala, Martin .
PHYSICAL REVIEW LETTERS, 2022, 128 (16)
[5]   ENTANGLEABILITY OF CONES [J].
Aubrun, Guillaume ;
Lami, Ludovico ;
Palazuelos, Carlos ;
Plavala, Martin .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2021, 31 (02) :181-205
[6]   Discriminating states:: The quantum Chernoff bound [J].
Audenaert, K. M. R. ;
Calsamiglia, J. ;
Munoz-Tapia, R. ;
Bagan, E. ;
Masanes, Ll. ;
Acin, A. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2007, 98 (16)
[7]   Structure of Optimal State Discrimination in Generalized Probabilistic Theories [J].
Bae, Joonwoo ;
Kim, Dai-Gyoung ;
Kwek, Leong-Chuan .
ENTROPY, 2016, 18 (02)
[8]   Quantum state discrimination and its applications [J].
Bae, Joonwoo ;
Kwek, Leong-Chuan .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (08)
[9]   Optimal discrimination of quantum states with a fixed rate of inconclusive outcomes [J].
Bagan, E. ;
Munoz-Tapia, R. ;
Olivares-Renteria, G. A. ;
Bergou, J. A. .
PHYSICAL REVIEW A, 2012, 86 (04)
[10]   Quantum state discrimination [J].
Barnett, Stephen M. ;
Croke, Sarah .
ADVANCES IN OPTICS AND PHOTONICS, 2009, 1 (02) :238-278