Fortifying Federated Learning in IIoT: Leveraging Blockchain and Digital Twin Innovations for Enhanced Security and Resilience

被引:3
|
作者
Prathiba, Sahaya Beni [1 ]
Govindarajan, Yeshwanth [2 ]
Pranav Amirtha Ganesan, Vishal [2 ]
Ramachandran, Anirudh [2 ]
Selvaraj, Arikumar K. [3 ]
Kashif Bashir, Ali [4 ,5 ,6 ]
Reddy Gadekallu, Thippa [7 ,8 ]
机构
[1] Vellore Inst Technol, Ctr Cyber Phys Syst, Sch Comp Sci & Engn, Chennai 600127, India
[2] Vellore Inst Technol, Sch Comp Sci & Engn, Chennai 600127, India
[3] SRM Inst Sci & Technol SRMIST, Coll Engn & Technol, Dept Data Sci & Business Syst, Kattankulathur 603203, India
[4] Manchester Metropolitan Univ, Dept Comp & Math, Manchester M15 6BH, Lancs, England
[5] Woxsen Univ, Woxsen Sch Business, Hyderabad 502345, India
[6] Lebanese Amer Univ, Dept Comp Sci & Math, Beirut 135053, Lebanon
[7] Lovely Profess Univ, Div Res & Dev, Phagwara 144001, India
[8] Chitkara Univ, Ctr Res Impact & Outcome, Rajpura 140401, Punjab, India
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Data models; Industrial Internet of Things; Blockchains; Training; Security; Digital twins; Servers; Federated learning; Data integrity; Nonfungible tokens; Blockchain; data poisoning; decentralized federated learning; digital twin; industrial internet of things; model poisoning; non-fungible tokens; Sybil attack;
D O I
10.1109/ACCESS.2024.3401039
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ensuring robustness against adversarial attacks is imperative for Machine Learning (ML) systems within the critical infrastructures of the Industrial Internet of Things (IIoT). This paper addresses vulnerabilities in IIoT systems, particularly in distributed environments like Federated Learning (FL) by presenting a resilient framework - Secure Federated Learning (SFL) specifically designed to mitigate data and model poisoning, as well as Sybil attacks within these networks. Sybil attacks, involving the creation of multiple fake identities, and poisoning attacks significantly compromise the integrity and reliability of ML models in FL environments. Our SFL framework leverages a Digital Twin (DT) as a critical aggregation checkpoint to counteract data and model poisoning attacks in IIoT's distributed settings. The DT serves as a protective mechanism during the model update aggregation phase, substantially enhancing the system's resilience. To further secure IIoT infrastructures, SFL employs blockchain-based Non-Fungible Tokens (NFTs) to authenticate participant identities, effectively preventing Sybil attacks by ensuring traceability and accountability among distributed nodes. Experimental evaluation within IIoT scenarios demonstrates that SFL substantially enhances defensive capabilities, maintaining the integrity and robustness of model learning. Comparative results reveal that the SFL framework, when applied to IIoT federated environments, achieves a commendable 97% accuracy, outperforming conventional FL approaches. SFL also demonstrates a remarkable reduction in loss rate, recording just 0.07 compared to the 0.14 loss rate experienced by standard FL systems. These findings highlight the efficiency and applicability of the SFL framework in enhancing data security and traceability within the IIoT ecosystem.
引用
收藏
页码:68968 / 68980
页数:13
相关论文
共 50 条
  • [31] A Blockchain-Assisted Federated Learning Framework for Secure and Self-Optimizing Digital Twins in Industrial IoT
    Ababio, Innocent Boakye
    Bieniek, Jan
    Rahouti, Mohamed
    Hayajneh, Thaier
    Aledhari, Mohammed
    Verma, Dinesh C.
    Chehri, Abdellah
    FUTURE INTERNET, 2025, 17 (01)
  • [32] Enhanced Security and Privacy via Fragmented Federated Learning
    Jebreel, Najeeb Moharram
    Domingo-Ferrer, Josep
    Blanco-Justicia, Alberto
    Sanchez, David
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (05) : 6703 - 6717
  • [33] Edge-IIoTset: A New Comprehensive Realistic Cyber Security Dataset of IoT and IIoT Applications for Centralized and Federated Learning
    Ferrag, Mohamed Amine
    Friha, Othmane
    Hamouda, Djallel
    Maglaras, Leandros
    Janicke, Helge
    IEEE ACCESS, 2022, 10 : 40281 - 40306
  • [34] A Blockchain-based Federated Learning Framework for Defending Against Poisoning Attacks in IIOT
    Xie, Jiale
    Feng, Libo
    Fang, Fake
    Yuan, Zehui
    Deng, Xian
    Liu, Junhong
    Wu, Peng
    Li, Zhuo
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 2442 - 2447
  • [35] Communication-Efficient Federated Learning for Digital Twin Systems of Industrial Internet of Things
    Zhao, Yunming
    Li, Li
    Liu, Ying
    Fan, Yuxi
    Lin, Kuo-Yi
    IFAC PAPERSONLINE, 2022, 55 (02): : 433 - 438
  • [36] Communication-Efficient Federated Learning for Digital Twin Edge Networks in Industrial IoT
    Lu, Yunlong
    Huang, Xiaohong
    Zhang, Ke
    Maharjan, Sabita
    Zhang, Yan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (08) : 5709 - 5718
  • [37] Digital Twin Enhanced Federated Reinforcement Learning With Lightweight Knowledge Distillation in Mobile Networks
    Zhou, Xiaokang
    Zheng, Xuzhe
    Cui, Xuesong
    Shi, Jiashuai
    Liang, Wei
    Yan, Zheng
    Yang, Laurence T.
    Shimizu, Shohei
    Wang, Kevin I-Kai
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (10) : 3191 - 3211
  • [38] Joining Federated Learning to Blockchain for Digital Forensics in IoT
    Almutairi, Wejdan
    Moulahi, Tarek
    COMPUTERS, 2023, 12 (08)
  • [39] Federated learning optimization: A computational blockchain process with offloading analysis to enhance security
    Shitharth, Selvarajan
    Manoharan, Hariprasath
    Shankar, Achyut
    Alsowail, Rakan A.
    Pandiaraj, Saravanan
    Edalatpanah, Seyyed Ahmad
    Viriyasitavat, Wattana
    EGYPTIAN INFORMATICS JOURNAL, 2023, 24 (04)
  • [40] Blockchain-Based Federated Learning for Data Privacy and Security
    Murugan, G.
    Divyashree, D.
    Ravisankar, P.
    Vasudevan, M.
    Karthikeyan, T.
    Singh, Devesh Pratap
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,