ECG-only explainable deep learning algorithm predicts the risk for malignant ventricular arrhythmia in phospholamban cardiomyopathy

被引:4
|
作者
van de Leur, Rutger R. [1 ]
de Brouwer, Remco [2 ]
Bleijendaal, Hidde [3 ,4 ,5 ]
Verstraelen, Tom E. [3 ,4 ]
Mahmoud, Belend [2 ]
Perez-Matos, Ana [6 ]
Dickhoff, Cathelijne [7 ]
Schoonderwoerd, Bas A. [8 ]
Germans, Tjeerd [9 ]
Houweling, Arjan [10 ]
van der Zwaag, Paul A. [11 ]
Cox, Moniek G. P. J.
Tintelen, J. Peter van [12 ]
te Riele, Anneline S. J. M.
van denBerg, Maarten P.
Wilde, Arthur A. M. [3 ,4 ]
Doevendans, Pieter A. [4 ,13 ,14 ]
de Boer, Rudolf A. [2 ,15 ]
van Es, Rene
机构
[1] Univ Med Ctr Utrecht, Dept Cardiol, Heidelberglaan 100, NL-3584 CX Utrecht, Netherlands
[2] Univ Med Ctr Groningen, Dept Cardiol, Groningen, Netherlands
[3] Univ Amsterdam, Dept Cardiol, Amsterdam UMC, Amsterdam, Netherlands
[4] European Reference Network Rare Lowprevalence Comp, Amsterdam, Netherlands
[5] Univ Amsterdam, Amsterdam Univ Med Ctr, Dept Clin Epidemiol Biostat & Bioinformat, Amsterdam, Netherlands
[6] St Antonius Hosp, Dijklander Hosp, Dept Cardiol, Sneek Dept Cardiol, Hoorn, Netherlands
[7] Dijklander Hosp, Dept Cardiol, Hoorn, Netherlands
[8] Med Ctr Leeuwarden, Dept Cardiol, Leeuwarden, Netherlands
[9] Noordwest Hosp Grp, Dept Cardiol, Alkmaar, Netherlands
[10] Amsterdam Univ Med Ctr, Dept Human Genet, Amsterdam, Netherlands
[11] Univ Med Ctr Groningen, Dept Genet, Groningen, Netherlands
[12] Univ Med Ctr Utrecht, Dept Genet, Utrecht, Netherlands
[13] Netherlands Heart Inst, Utrecht, Netherlands
[14] Cent Mil Hosp, Utrecht, Netherlands
[15] Erasmus MC, Dept Cardiol, Rotterdam, Netherlands
关键词
Electrocardiography; Deep learning; Phospholamban; Genetic cardiomyopathy; Explainable artificial intelligence; P.ARG14DEL MUTATION; MODELS;
D O I
10.1016/j.hrthm.2024.02.038
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Phospholamban (PLN) p.(Arg14del) variant carriers are at risk for development of malignant ventricular arrhythmia (MVA). Accurate risk stratification allows timely implantation of intracardiac defibrillators and is currently performed with a multimodality prediction model. OBJECTIVE This study aimed to investigate whether an explainable deep learning-based approach allows risk prediction with only electrocardiogram (ECG) data. METHODS A total of 679 PLN p.(Arg14del) carriers without MVA at baseline were identified. A deep learning-based variational auto-encoder, trained on 1.1 million ECGs, was used to convert the 12-lead baseline ECG into its FactorECG, a compressed version of the ECG that summarizes it into 32 explainable factors. Prediction models were developed by Cox regression. RESULTS The deep learning-based ECG-only approach was able to predict MVA with a C statistic of 0.79 (95% CI, 0.76-0.83), comparable to the current prediction model (C statistic, 0.83 [95% CI, 0.79-0.88]; P = .054) and outperforming a model based on conventional ECG parameters (low-voltage ECG and negative T waves; C statistic, 0.65 [95% CI, 0.58-0.73]; P < .001). Clinical simulations showed that a 2-step approach, with ECG-only screening followed by a full workup, resulted in 60% less additional diagnostics while outperforming the multimodal prediction model in all patients. A visualization tool was created to provide interactive visualizations (https://pln.ecgx.ai). CONCLUSION Our deep learning-based algorithm based on ECG data only accurately predicts the occurrence of MVA in PLN p.(Arg14del) carriers, enabling more efficient stratification of patients who need additional diagnostic testing and follow-up.
引用
收藏
页码:1102 / 1112
页数:11
相关论文
共 2 条
  • [1] A Deep Learning-Based Algorithm for ECG Arrhythmia Classification
    Espin-Ramos, Daniela
    Alvarado, Vicente
    Valarezo Anazco, Edwin
    Flores, Erick
    Nunez, Bolivar
    Santos, Jose
    Guerrero, Sara
    Aviles-Cedeno, Jonathan
    2023 IEEE 13TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS, 2023,
  • [2] Towards Transparent AI in Medicine: ECG-Based Arrhythmia Detection with Explainable Deep Learning
    Kovalchuk, Oleksii
    Barmak, Oleksandr
    Radiuk, Pavlo
    Klymenko, Liliana
    Krak, Iurii
    TECHNOLOGIES, 2025, 13 (01)