ReBiT-Net: Resource-Efficient Bidirectional Transmission Network for RGB-D Salient Object Detection

被引:1
作者
Yi, Youpeng [1 ]
Xu, Jiawei [1 ]
Zhang, Xiaoqin [1 ]
Park, Seop Hyeong [2 ]
机构
[1] Wenzhou Univ, Coll Comp Sci & Artificial Intelligence, Wenzhou 325035, Zhejiang, Peoples R China
[2] Hallym Univ, Div Software, Chunchon 24252, Gangwon Do, South Korea
关键词
RGB-D Salient Object Detection; Deep Learning; Efficiency;
D O I
10.1007/s42835-024-01971-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Existing artificial neural network-based methodologies for salient object detection in RGB-depth (RGB-D) images typically require significant memory and computation time. In this paper, we propose ReBiT-Net, an novel and resource-efficient network designed to addresses this issue. ReBiT-Net utilizes a mobile network for feature extraction and incorporates depth map quality to regulate the fusion of multi-modal features, resulting in top-to-bottom refinement of salient objects using salient information. Empirical evaluations conducted on five benchmark datasets demonstrate the superior performance of our model in terms of accuracy (achieving 334 frames per second for an input size of 320 x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 320) and model parameters (merely 5.1 MB). Moreover, we introduce ReBiT-Net*, a simplified variant of ReBiT-Net, which entails reduced model parameters (4.2 MB) and enhanced processing speed (793 frames per second for a 256 x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times$$\end{document} 256 input size). These improvements are achieved through reduced memory requirements and computational demands via the adoption of a smaller input image size.
引用
收藏
页码:5327 / 5337
页数:11
相关论文
共 38 条
[1]   Bias Loss for Mobile Neural Networks [J].
Abrahamyan, Lusine ;
Ziatchin, Valentin ;
Chen, Yiming ;
Deligiannis, Nikos .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :6536-6546
[2]   Three-Stream Attention-Aware Network for RGB-D Salient Object Detection [J].
Chen, Hao ;
Li, Youfu .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (06) :2825-2835
[3]   Progressively Complementarity-aware Fusion Network for RGB-D Salient Object Detection [J].
Chen, Hao ;
Li, Youfu .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3051-3060
[4]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[5]  
Chen S., 2020, Computer Vision, P520
[6]   CFIDNet: cascaded feature interaction decoder for RGB-D salient object detection [J].
Chen, Tianyou ;
Hu, Xiaoguang ;
Xiao, Jin ;
Zhang, Guofeng ;
Wang, Shaojie .
NEURAL COMPUTING & APPLICATIONS, 2022, 34 (10) :7547-7563
[7]  
Cheng Y, 2014, ICIMCS 14
[8]   Rethinking RGB-D Salient Object Detection: Models, Data Sets, and Large-Scale Benchmarks [J].
Fan, Deng-Ping ;
Lin, Zheng ;
Zhang, Zhao ;
Zhu, Menglong ;
Cheng, Ming-Ming .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (05) :2075-2089
[9]   JL-DCF: Joint Learning and Densely-Cooperative Fusion Framework for RGB-D Salient Object Detection [J].
Fu, Keren ;
Fan, Deng-Ping ;
Ji, Ge-Peng ;
Zhao, Qijun .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :3049-3059
[10]  
Ju R, 2014, IEEE IMAGE PROC, P1115, DOI 10.1109/ICIP.2014.7025222