Generative invertible quantum neural networks

被引:3
作者
Rousselot, Armand [1 ]
Spannowsky, Michael [2 ]
机构
[1] Heidelberg Univ, Interdisciplinary Ctr Sci Comp, Heidelberg, Germany
[2] Univ Durham, Phys Dept, Inst Particle Phys Phenomenol, Durham DH1 3LE, England
来源
SCIPOST PHYSICS | 2024年 / 16卷 / 06期
关键词
D O I
10.21468/SciPostPhys.16.6.146
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Invertible Neural Networks (INN) have become established tools for the simulation and generation of highly complex data. We propose a quantum -gate algorithm for a Quantum Invertible Neural Network (QINN) and apply it to the LHC data of jet -associated production of a Z -boson that decays into leptons, a standard candle process for particle collider precision measurements. We compare the QINN's performance for different loss functions and training scenarios. For this task, we find that a hybrid QINN matches the performance of a significantly larger purely classical INN in learning and generating complex data.
引用
收藏
页数:16
相关论文
共 50 条
[21]   Generative Flows with Invertible Attentions [J].
Sukthanker, Rhea Sanjay ;
Huang, Zhiwu ;
Kumar, Suryansh ;
Timofte, Radu ;
Van Gool, Luc .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :11224-11233
[22]   Generative Flows with Invertible Attentions [J].
Sukthanker, Rhea Sanjay ;
Huang, Zhiwu ;
Kumar, Suryansh ;
Timofte, Radu ;
Van Gool, Luc .
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2022, 2022-June :11224-11233
[23]   Koopman operator learning using invertible neural networks ☆ [J].
Meng, Yuhuang ;
Huang, Jianguo ;
Qiu, Yue .
JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 501
[24]   Koopman operator learning using invertible neural networks [J].
Meng, Yuhuang ;
Huang, Jianguo ;
Qiu, Yue .
Journal of Computational Physics, 2024, 501
[25]   MintNet: Building Invertible Neural Networks with Masked Convolutions [J].
Song, Yang ;
Meng, Chenlin ;
Ermon, Stefano .
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
[26]   Understanding and Mitigating Exploding Inverses in Invertible Neural Networks [J].
Behrmann, Jens ;
Vicol, Paul ;
Wang, Kuan-Chieh ;
Grosse, Roger ;
Jacobsen, Jorn-Henrik .
24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
[27]   Imperceptible Adversarial Attack via Invertible Neural Networks [J].
Chen, Zihan ;
Wang, Ziyue ;
Huang, Jun-Jie ;
Zhao, Wentao ;
Liu, Xiao ;
Guan, Dejian .
THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, :414-424
[28]   Stabilizing invertible neural networks using mixture models [J].
Hagemann, Paul ;
Neumayer, Sebastian .
INVERSE PROBLEMS, 2021, 37 (08)
[29]   Lossless Image Steganography Based on Invertible Neural Networks [J].
Liu, Lianshan ;
Tang, Li ;
Zheng, Weimin .
ENTROPY, 2022, 24 (12)
[30]   Unsupervised Domain Transfer with Conditional Invertible Neural Networks [J].
Dreher, Kris K. ;
Ayala, Leonardo ;
Schellenberg, Melanie ;
Huebner, Marco ;
Noelke, Jan-Hinrich ;
Adler, Tim J. ;
Seidlitz, Silvia ;
Sellner, Jan ;
Studier-Fischer, Alexander ;
Groehl, Janek ;
Nickel, Felix ;
Koethe, Ullrich ;
Seitel, Alexander ;
Maier-Hein, Lena .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT I, 2023, 14220 :770-780