Generative invertible quantum neural networks

被引:3
|
作者
Rousselot, Armand [1 ]
Spannowsky, Michael [2 ]
机构
[1] Heidelberg Univ, Interdisciplinary Ctr Sci Comp, Heidelberg, Germany
[2] Univ Durham, Phys Dept, Inst Particle Phys Phenomenol, Durham DH1 3LE, England
来源
SCIPOST PHYSICS | 2024年 / 16卷 / 06期
关键词
D O I
10.21468/SciPostPhys.16.6.146
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Invertible Neural Networks (INN) have become established tools for the simulation and generation of highly complex data. We propose a quantum -gate algorithm for a Quantum Invertible Neural Network (QINN) and apply it to the LHC data of jet -associated production of a Z -boson that decays into leptons, a standard candle process for particle collider precision measurements. We compare the QINN's performance for different loss functions and training scenarios. For this task, we find that a hybrid QINN matches the performance of a significantly larger purely classical INN in learning and generating complex data.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] GENERATIVE DESIGN OF A GAS TURBINE COMBUSTOR USING INVERTIBLE NEURAL NETWORKS
    Krueger, Patrick
    Gottschalk, Hanno
    Werdelmann, Bastian
    Krebs, Werner
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 3A, 2024,
  • [2] Generative Design of a Gas Turbine Combustor Using Invertible Neural Networks
    Krueger, Patrick
    Gottschalk, Hanno
    Werdelmann, Bastian
    Krebs, Werner
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2025, 147 (01):
  • [3] Generative Inverse Design of Aerodynamic Shapes Using Conditional Invertible Neural Networks
    Warey, Alok
    Raul, Vishal
    Kaushik, Shailendra
    Han, Taeyoung
    Chakravarty, Rajan
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2023, 23 (03)
  • [4] Intelligent Generative Models for Quantum Neural Networks
    Ding, Xiaodong
    Xiong, Qibing
    Xu, Jinchen
    Liu, Fudong
    Qiu, Junling
    Zhu, Yu
    Hou, Yifan
    Shan, Zheng
    ADVANCED QUANTUM TECHNOLOGIES, 2024,
  • [5] Recent Advances for Quantum Neural Networks in Generative Learning
    Tian, Jinkai
    Sun, Xiaoyu
    Du, Yuxuan
    Zhao, Shanshan
    Liu, Qing
    Zhang, Kaining
    Yi, Wei
    Huang, Wanrong
    Wang, Chaoyue
    Wu, Xingyao
    Hsieh, Min-Hsiu
    Liu, Tongliang
    Yang, Wenjing
    Tao, Dacheng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) : 12321 - 12340
  • [6] Inverse design of optical lenses enabled by generative flow-based invertible neural networks
    Menglong Luo
    Sang-Shin Lee
    Scientific Reports, 13
  • [7] Inverse design of optical lenses enabled by generative flow-based invertible neural networks
    Luo, Menglong
    Lee, Sang-Shin
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [8] Flexible learning of quantum states with generative query neural networks
    Yan Zhu
    Ya-Dong Wu
    Ge Bai
    Dong-Sheng Wang
    Yuexuan Wang
    Giulio Chiribella
    Nature Communications, 13
  • [9] Flexible learning of quantum states with generative query neural networks
    Zhu, Yan
    Wu, Ya-Dong
    Bai, Ge
    Wang, Dong-Sheng
    Wang, Yuexuan
    Chiribella, Giulio
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [10] Invertible Neural Networks for Graph Prediction
    Xu C.
    Cheng X.
    Xie Y.
    IEEE Journal on Selected Areas in Information Theory, 2022, 3 (03): : 454 - 467