ON CHARACTERIZING UNCERTAINTY SOURCES IN LASER POWDER BED FUSION ADDITIVE MANUFACTURING MODELS

被引:0
|
作者
Moges, Tesfaye [1 ,2 ]
Witherell, Paul [2 ]
Ameta, Gaurav [3 ]
机构
[1] Indian Inst Technol Delhi IITD, Dept Mech Engn, New Delhi, India
[2] NIST, Engn Lab, Gaithersburg, MD 20899 USA
[3] Dakota Consulting Inc, Silver Spring, MD USA
关键词
Additive Manufacturing; laser powder bed fusion; uncertainty; ontology; FLUID-FLOW; HEAT; QUANTIFICATION; VERIFICATION; VALIDATION; MECHANISMS; FRAMEWORK; PHYSICS; CODE;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Tremendous effort has been dedicated to computational models and simulations of Additive Manufacturing (AM) processes to better understand process complexities and better realize high-quality parts. However, understanding whether a model is an acceptable representation for a given scenario is a difficult proposition. With metals, the laser powder bed fusion (L-PBF) process involves complex physical phenomena such as powder packing, heat transfer, phase transformation, and fluid flow. Models based on these phenomena will possess different degrees of fidelity as they often rely on assumptions that may neglect or simplify process physics, resulting in uncertainty in their prediction accuracy. Predictive uncertainty and its characterization can vary greatly between models. This paper characterizes sources of L-PBF model uncertainty, including those due to modeling assumptions (model form uncertainty), numerical approximation (numerical uncertainty), and model input parameters (input parameter uncertainty) for low and high-fidelity models. The characterization of input uncertainty in terms of probability density function (PDF) and its propagation through L-PBF models, is discussed in detail. The systematic representation of such uncertainty sources is achieved by leveraging the Web Ontology Language (OWL) to capture relevant knowledge used for interoperability and reusability. The topology and mapping of the uncertainty sources establish fundamental requirements for measuring model fidelity and guiding the selection of a model suitable for its intended purpose.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Research Progress on Laser Powder Bed Fusion Additive Manufacturing of Zinc Alloys
    Meng, Fuxiang
    Du, Yulei
    MATERIALS, 2024, 17 (17)
  • [32] Dynamics of pore formation during laser powder bed fusion additive manufacturing
    Aiden A. Martin
    Nicholas P. Calta
    Saad A. Khairallah
    Jenny Wang
    Phillip J. Depond
    Anthony Y. Fong
    Vivek Thampy
    Gabe M. Guss
    Andrew M. Kiss
    Kevin H. Stone
    Christopher J. Tassone
    Johanna Nelson Weker
    Michael F. Toney
    Tony van Buuren
    Manyalibo J. Matthews
    Nature Communications, 10
  • [33] Spattering mechanism of laser powder bed fusion additive manufacturing on heterogeneous surfaces
    Ikeshoji, Toshi-Taka
    Yonehara, Makiko
    Kato, Chika
    Yanaga, Yuma
    Takeshita, Koki
    Kyogoku, Hideki
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [34] IN-PROCESS DATA INTEGRATION FOR LASER POWDER BED FUSION ADDITIVE MANUFACTURING
    Perisic, Milica
    Lu, Yan
    Jones, Albert
    PROCEEDINGS OF ASME 2022 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2022, VOL 2, 2022,
  • [35] Dynamics of pore formation during laser powder bed fusion additive manufacturing
    Martin, Aiden A.
    Calta, Nicholas P.
    Khairallah, Saad A.
    Wang, Jenny
    Depond, Phillip J.
    Fong, Anthony Y.
    Thampy, Vivek
    Guss, Gabe M.
    Kiss, Andrew M.
    Stone, Kevin H.
    Tassone, Christopher J.
    Weker, Johanna Nelson
    Toney, Michael F.
    van Buuren, Tony
    Matthews, Manyalibo J.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [36] Analysis of the Porous Structures from Laser Powder Bed Fusion Additive Manufacturing
    Wang, Chang Jiang
    Hazlehurst, Kevin
    Arjunan, Arun
    Shen, Lida
    ADVANCES IN MANUFACTURING TECHNOLOGY XXXIV, 2021, 15 : 97 - 102
  • [37] ADDITIVE MANUFACTURING OF STEEL ALLOYS USING LASER POWDER-BED FUSION
    Jamshidinia, Mahdi
    Sadek, Alber
    Wang, Wesley
    Kelly, Shawn
    ADVANCED MATERIALS & PROCESSES, 2015, 173 (01): : 20 - 24
  • [38] Laser-based powder bed fusion additive manufacturing of pure copper
    Jadhav, Suraj Dinkar
    Goossens, Louca Raphael
    Kinds, Yannis
    Van Hooreweder, Brecht
    Vanmeensel, Kim
    ADDITIVE MANUFACTURING, 2021, 42
  • [39] A Manufacturability Evaluation of Complex Architectures by Laser Powder Bed Fusion Additive Manufacturing
    McGregor, Martine
    Patel, Sagar
    Zhang, Kevin
    Yu, Adam
    Vlasea, Mihaela
    McLachlin, Stewart
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2024, 146 (06):
  • [40] Defect structure process maps for laser powder bed fusion additive manufacturing
    Gordon, Jerard, V
    Narra, Sneha P.
    Cunningham, Ross W.
    Liu, He
    Chen, Hangman
    Suter, Robert M.
    Beuth, Jack L.
    Rollett, Anthony D.
    ADDITIVE MANUFACTURING, 2020, 36