ON CHARACTERIZING UNCERTAINTY SOURCES IN LASER POWDER BED FUSION ADDITIVE MANUFACTURING MODELS

被引:0
|
作者
Moges, Tesfaye [1 ,2 ]
Witherell, Paul [2 ]
Ameta, Gaurav [3 ]
机构
[1] Indian Inst Technol Delhi IITD, Dept Mech Engn, New Delhi, India
[2] NIST, Engn Lab, Gaithersburg, MD 20899 USA
[3] Dakota Consulting Inc, Silver Spring, MD USA
关键词
Additive Manufacturing; laser powder bed fusion; uncertainty; ontology; FLUID-FLOW; HEAT; QUANTIFICATION; VERIFICATION; VALIDATION; MECHANISMS; FRAMEWORK; PHYSICS; CODE;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Tremendous effort has been dedicated to computational models and simulations of Additive Manufacturing (AM) processes to better understand process complexities and better realize high-quality parts. However, understanding whether a model is an acceptable representation for a given scenario is a difficult proposition. With metals, the laser powder bed fusion (L-PBF) process involves complex physical phenomena such as powder packing, heat transfer, phase transformation, and fluid flow. Models based on these phenomena will possess different degrees of fidelity as they often rely on assumptions that may neglect or simplify process physics, resulting in uncertainty in their prediction accuracy. Predictive uncertainty and its characterization can vary greatly between models. This paper characterizes sources of L-PBF model uncertainty, including those due to modeling assumptions (model form uncertainty), numerical approximation (numerical uncertainty), and model input parameters (input parameter uncertainty) for low and high-fidelity models. The characterization of input uncertainty in terms of probability density function (PDF) and its propagation through L-PBF models, is discussed in detail. The systematic representation of such uncertainty sources is achieved by leveraging the Web Ontology Language (OWL) to capture relevant knowledge used for interoperability and reusability. The topology and mapping of the uncertainty sources establish fundamental requirements for measuring model fidelity and guiding the selection of a model suitable for its intended purpose.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Development of Micro Laser Powder Bed Fusion for Additive Manufacturing of Inconel 718
    Khademzadeh, Saeed
    Gennari, Claudio
    Zanovello, Andrea
    Franceschi, Mattia
    Campagnolo, Alberto
    Brunelli, Katya
    MATERIALS, 2022, 15 (15)
  • [22] Laser Absorption and Scaling Behavior in Powder Bed Fusion Additive Manufacturing of Metals
    Ye, Jianchao
    Rubenchik, Alexander M.
    Crumb, Michael F.
    Guss, Gabe
    Matthews, Manyalibo J.
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [23] Absorptivity and energy scaling associated with laser powder bed fusion additive manufacturing
    Matthews, Manyalibo
    Ye, Jianchao
    Gargalis, Leo
    Guss, Gabe
    Khairallah, Saad
    Rubenchik, Alexander
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [24] Laser Powder Bed Fusion Additive Manufacturing of Recycled Zircaloy-4
    Ahn, Soung Yeoul
    Jeong, Sang Guk
    Kim, Eun Seong
    Kang, Suk Hoon
    Choe, Jungho
    Ryu, Joo Young
    Choi, Dae Woon
    Lee, Jin Seok
    Cho, Jung-Wook
    Nakano, Takayoshi
    Kim, Hyoung Seop
    METALS AND MATERIALS INTERNATIONAL, 2023, 29 (09) : 2760 - 2766
  • [25] Laser powder bed fusion for metal additive manufacturing: perspectives on recent developments
    Sing, S. L.
    Yeong, W. Y.
    VIRTUAL AND PHYSICAL PROTOTYPING, 2020, 15 (03) : 359 - 370
  • [26] Laser Powder Bed Fusion Additive Manufacturing of Recycled Zircaloy-4
    Soung Yeoul Ahn
    Sang Guk Jeong
    Eun Seong Kim
    Suk Hoon Kang
    Jungho Choe
    Joo Young Ryu
    Dae Woon Choi
    Jin Seok Lee
    Jung-Wook Cho
    Takayoshi Nakano
    Hyoung Seop Kim
    Metals and Materials International, 2023, 29 : 2760 - 2766
  • [27] Alloy design for laser powder bed fusion additive manufacturing: a critical review
    Zhuangzhuang Liu
    Qihang Zhou
    Xiaokang Liang
    Xiebin Wang
    Guichuan Li
    Kim Vanmeensel
    Jianxin Xie
    International Journal of Extreme Manufacturing, 2024, 6 (02) : 33 - 68
  • [28] Spattering mechanism of laser powder bed fusion additive manufacturing on heterogeneous surfaces
    Toshi-Taka Ikeshoji
    Makiko Yonehara
    Chika Kato
    Yuma Yanaga
    Koki Takeshita
    Hideki Kyogoku
    Scientific Reports, 12
  • [29] A mechanistic explanation of shrinkage porosity in laser powder bed fusion additive manufacturing
    Templeton, William Frieden
    Hinnebusch, Shawn
    Strayer, Seth T.
    To, Albert C.
    Pistorius, P. Chris
    Narra, Sneha Prabha
    ACTA MATERIALIA, 2024, 266
  • [30] Composition regulation of composite materials in laser powder bed fusion additive manufacturing
    Yao, Dengzhi
    Wang, Ju
    Cai, Yao
    Zhao, Tingting
    An, Xizhong
    Zhang, Hao
    Fu, Haitao
    Yang, Xiaohong
    Zou, Qingchuan
    Wang, Lin
    POWDER TECHNOLOGY, 2022, 408