Hecatomb: an integrated software platform for viral metagenomics

被引:1
作者
Roach, Michael J. [1 ,2 ,3 ]
Beecroft, Sarah J. [4 ]
Mihindukulasuriya, Kathie A. [5 ,6 ]
Wang, Leran [5 ,6 ]
Paredes, Anne [5 ]
Cardenas, Luis Alberto Chica [5 ,6 ]
Henry-Cocks, Kara [1 ]
Lima, Lais Farias Oliveira [7 ]
Dinsdale, Elizabeth A. [1 ]
Edwards, Robert A. [1 ]
Handley, Scott A. [5 ,6 ]
机构
[1] Flinders Univ S Australia, Adelaide, SA, Australia
[2] Univ Adelaide, Adelaide Ctr Epigenet, Adelaide, SA 5005, Australia
[3] Univ Adelaide, South Australian Immunogen Canc Inst, Adelaide, SA 5005, Australia
[4] Harry Perkins Inst Med Res, Perth, WA 6009, Australia
[5] Washington Univ, Sch Med, Dept Pathol & Immunol, St Louis, MO 63110 USA
[6] Washington Univ, Sch Med, Edison Family Ctr Genome Sci & Syst Biol, St Louis, MO 63110 USA
[7] San Diego State Univ, Biol Dept, San Diego, CA 92182 USA
来源
GIGASCIENCE | 2024年 / 13卷
基金
美国国家卫生研究院;
关键词
virome; virus discovery; bioinformatic workflow; viral metagenomics; BACTERIAL MICROBIOME; VIRUS DISCOVERY; VIROME; IMMUNODEFICIENCY; COMMUNITY; ASSEMBLER; MEGAHIT; ORIGINS;
D O I
10.1093/gigascience/giae020
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background Modern sequencing technologies offer extraordinary opportunities for virus discovery and virome analysis. Annotation of viral sequences from metagenomic data requires a complex series of steps to ensure accurate annotation of individual reads and assembled contigs. In addition, varying study designs will require project-specific statistical analyses.Findings Here we introduce Hecatomb, a bioinformatic platform coordinating commonly used tasks required for virome analysis. Hecatomb means "a great sacrifice." In this setting, Hecatomb is "sacrificing" false-positive viral annotations using extensive quality control and tiered-database searches. Hecatomb processes metagenomic data obtained from both short- and long-read sequencing technologies, providing annotations to individual sequences and assembled contigs. Results are provided in commonly used data formats useful for downstream analysis. Here we demonstrate the functionality of Hecatomb through the reanalysis of a primate enteric and a novel coral reef virome.Conclusion Hecatomb provides an integrated platform to manage many commonly used steps for virome characterization, including rigorous quality control, host removal, and both read- and contig-based analysis. Each step is managed using the Snakemake workflow manager with dependency management using Conda. Hecatomb outputs several tables properly formatted for immediate use within popular data analysis and visualization tools, enabling effective data interpretation for a variety of study designs. Hecatomb is hosted on GitHub (github.com/shandley/hecatomb) and is available for installation from Bioconda and PyPI.
引用
收藏
页数:16
相关论文
共 119 条
  • [91] VirSorter: mining viral signal from microbial genomic data
    Roux, Simon
    Enault, Francois
    Hurwitz, Bonnie L.
    Sullivan, Matthew B.
    [J]. PEERJ, 2015, 3
  • [92] NCBI Taxonomy: a comprehensive update on curation, resources and tools
    Schoch, Conrad L.
    Ciufo, Stacy
    Domrachev, Mikhail
    Hotton, Carol L.
    Kannan, Sivakumar
    Khovanskaya, Rogneda
    Leipe, Detlef
    Mcveigh, Richard
    O'Neill, Kathleen
    Robbertse, Barbara
    Sharma, Shobha
    Soussov, Vladimir
    Sullivan, John P.
    Sun, Lu
    Turner, Sean
    Karsch-Mizrachi, Ilene
    [J]. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2020,
  • [93] KMCP: accurate metagenomic profiling of both prokaryotic and viral populations by pseudo-mapping
    Shen, Wei
    Xiang, Hongyan
    Huang, Tianquan
    Tang, Hui
    Peng, Mingli
    Cai, Dachuan
    Hu, Peng
    Ren, Hong
    [J]. BIOINFORMATICS, 2023, 39 (01)
  • [94] TaxonKit: A practical and efficient NCBI taxonomy toolkit
    Shen, Wei
    Ren, Hong
    [J]. JOURNAL OF GENETICS AND GENOMICS, 2021, 48 (09) : 844 - 850
  • [95] SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation
    Shen, Wei
    Le, Shuai
    Li, Yan
    Hu, Fuquan
    [J]. PLOS ONE, 2016, 11 (10):
  • [96] The complexity landscape of viral genomes
    Silva, Jorge Miguel
    Pratas, Diogo
    Caetano, Tania
    Matos, Sergio
    [J]. GIGASCIENCE, 2022, 11
  • [97] Profile Hidden Markov Models for the Detection of Viruses within Metagenomic Sequence Data
    Skewes-Cox, Peter
    Sharpton, Thomas J.
    Pollard, Katherine S.
    DeRisi, Joseph L.
    [J]. PLOS ONE, 2014, 9 (08):
  • [98] Clustering huge protein sequence sets in linear time
    Steinegger, Martin
    Soeding, Johannes
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [99] MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets
    Steinegger, Martin
    Soeding, Johannes
    [J]. NATURE BIOTECHNOLOGY, 2017, 35 (11) : 1026 - 1028
  • [100] Host Range and Coding Potential of Eukaryotic Giant Viruses
    Sun, Tsu-Wang
    Yang, Chia-Ling
    Kao, Tzu-Tong
    Wang, Tzu-Haw
    Lai, Ming-Wei
    Ku, Chuan
    [J]. VIRUSES-BASEL, 2020, 12 (11):