Nonlinear behaviors in back-gate effects of FDSOI MOSFETs at cryogenic temperatures

被引:0
作者
Hu, Yibo [1 ]
Ren, Zhipeng [1 ]
Yin, Yizhe [1 ]
Chen, Jing [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Mat Integrated Circuits, Shanghai 200050, Peoples R China
关键词
fully-depleted silicon on insulator (FD-SOI); cryogenic; back-gate effect; technology computer aided design (TCAD) simulation; CMOS TECHNOLOGY; OPERATION; DEVICES; DESIGN;
D O I
10.1088/1361-6641/ad5e17
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, we systematically investigate the DC performance of fully depleted silicon-on-insulator (FD-SOI) MOSFETs at both room and cryogenic temperatures as low as 77 K. The influences of back-gate bias on normal and flip-well devices are measured and analyzed. Both types devices display non-linear behaviors when adjusting the back-gate voltage at cryogenic temperatures. Notably, the non-linear effects are more prominent in normal-well devices. The possible reasons are analyzed and verified by technology computer aided design simulation, suggesting that normal-well devices are more susceptible to the formation of depletion regions between the buried oxide layer and the well. This phenomenon disrupts the linearity of the back-gate effect. This research contributes to understanding and characterizing of the back-gate effects in cryogenic environments and holds potential for high-performance computing applications.
引用
收藏
页数:10
相关论文
共 37 条
[1]   Impact of Back-Gate Biasing on the Transport Properties of 22 nm FD-SOI MOSFETs at Cryogenic Temperatures [J].
Al Mamun, Fahad ;
Vasileska, Dragica ;
Esqueda, Ivan Sanchez .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (10) :5417-5423
[2]  
[Anonymous], 2016, Microsoft research project puts cloud in ocean for the first time Microsoft News Center
[3]   NUMERICAL-SIMULATION OF SUBMICROMETER DEVICES INCLUDING COUPLED NONLOCAL TRANSPORT AND NONISOTHERMAL EFFECTS [J].
APANOVICH, Y ;
BLAKEY, P ;
COTTLE, R ;
LYUMKIS, E ;
POLSKY, B ;
SHUR, A ;
TCHERNIAEV, A .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1995, 42 (05) :890-898
[4]   Comprehensive Kubo-Greenwood modelling of FDSOI MOS devices down to deep cryogenic temperatures [J].
Balestra, F. Serra di Santa ;
Contamin, L. ;
Casse, M. ;
Theodorou, C. ;
Balestra, F. ;
Ghibaudo, G. .
SOLID-STATE ELECTRONICS, 2022, 192
[5]  
Beckers A, 2018, INT CONF ULTI INTEGR, P93
[6]   Characterization and modeling of 28-nm FDSOI CMOS technology down to cryogenic temperatures [J].
Beckers, Arnout ;
Jazaeri, Farzan ;
Bohuslayskyi, Heorhii ;
Hutin, Louis ;
De Franceschi, Silvano ;
Enz, Christian .
SOLID-STATE ELECTRONICS, 2019, 159 :106-115
[7]   Cryogenic MOS Transistor Model [J].
Beckers, Arnout ;
Jazaeri, Farzan ;
Enz, Christian .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (09) :3617-3625
[8]   Cryogenic Characterization of 22-nm FDSOI CMOS Technology for Quantum Computing ICs [J].
Bonen, S. ;
Alakusu, U. ;
Duan, Y. ;
Gong, M. J. ;
Dadash, M. S. ;
Lucci, L. ;
Daughton, D. R. ;
Adam, G. C. ;
Iordanescu, S. ;
Pasteanu, M. ;
Giangu, I. ;
Jia, H. ;
Gutierrez, L. E. ;
Chen, W. T. ;
Messaoudi, N. ;
Harame, D. ;
Mueller, A. ;
Mansour, R. R. ;
Asbeck, P. ;
Voinigescu, S. P. .
IEEE ELECTRON DEVICE LETTERS, 2019, 40 (01) :127-130
[9]   A Next-Generation Cryogenic Processor Architecture [J].
Byun, Ilkwon ;
Min, Dongmoon ;
Lee, Gyuhyeon ;
Na, Seongmin ;
Kim, Jangwoo .
IEEE MICRO, 2021, 41 (03) :80-86
[10]   CryoCore: A Fast and Dense Processor Architecture for Cryogenic Computing [J].
Byun, Ilkwon ;
Min, Dongmoon ;
Lee, Gyu-hyeon ;
Na, Seongmin ;
Kim, Jangwoo .
2020 ACM/IEEE 47TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA 2020), 2020, :335-348