NbS2/Ti2CS2 2 /Ti 2 CS 2 heterostructure with excellent rate and storage performance as an anode material for Li/Na/K ion batteries: A first-principles calculation

被引:4
作者
Zhang, Zhongyong [1 ]
Yuan, Xian [2 ]
Wu, Yifan [1 ]
Ji, Wenjing [1 ]
Peng, Yuntong [1 ]
Zhou, Naigen [1 ]
Zhao, Shangquan [1 ]
机构
[1] Nanchang Univ, Sch Phys & Mat Sci, Nanchang 330031, Peoples R China
[2] Nanchang Inst Technol, Sch Sci, Nanchang 330099, Peoples R China
基金
中国国家自然科学基金;
关键词
Li/Na/K ion batteries; Anode materials; MXenes; Heterostructure; First-principles calculations; TOTAL-ENERGY CALCULATIONS; RECHARGEABLE LI; LITHIUM; CHALLENGES; MXENES;
D O I
10.1016/j.flatc.2024.100712
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The limited specific capacity of graphite anodes constrains the advancement of lithium-ion batteries (LIBs), sodium-ion batteries (NIBs), and potassium-ion batteries (KIBs). To address this, we have explored the potential of van der Waals heterostructures for high-performance anode materials. Specifically, we designed and analyzed the NbS2/Ti2CS2 2 /Ti 2 CS 2 heterostructure through first-principles calculations. This heterostructure demonstrates superior thermal stability and metallic conductivity. Furthermore, it allows for the stable adsorption of Li/Na/K atoms, indicating strong interactions that are advantageous for battery applications. Notably, the Li/Na/K ion diffusion barriers on NbS2/Ti2CS2 2 /Ti 2 CS 2 are lower compared to other anodes, enhancing ion mobility. The average open-circuit voltages (OCVs) for NbS2/Ti2CS2 2 /Ti 2 CS 2 as an anode in NIBs/KIBs range from 0 to 1 V, with a remarkable specific capacity of 489 mAh/g for NIBs. These findings position NbS2/Ti2CS2 2 /Ti 2 CS 2 as an exceptional candidate for next- generation battery anodes, potentially revolutionizing the LIB/NIB/KIB landscape. Our research contributes to the ongoing development of advanced anode materials, offering new pathways for enhancing battery performance.
引用
收藏
页数:9
相关论文
共 52 条
  • [1] MXenes/graphene heterostructures for Li battery applications: a first principles study
    Aierken, Yierpan
    Sevik, Cem
    Gulseren, Oguz
    Peeters, Francois M.
    Cakir, Deniz
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (05) : 2337 - 2345
  • [2] 2D metal carbides and nitrides (MXenes) for energy storage
    Anasori, Babak
    Lukatskaya, Maria R.
    Gogotsi, Yury
    [J]. NATURE REVIEWS MATERIALS, 2017, 2 (02):
  • [3] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [4] Born M., 1996, Dynamical Theory Of Crystal Lattices, DOI [10.1093/oso/9780192670083.001.0001, DOI 10.1093/OSO/9780192670083.001.0001]
  • [5] First-principle study of Ti2XS2 (X = C/N) MXenes as high capacity anodes for rechargeable potassium-ion batteries
    Chen, Haiyuan
    Zhang, Tan
    Wei, Chuanming
    Wang, Jianwei
    Niu, Xiaobin
    [J]. APPLIED SURFACE SCIENCE, 2021, 546
  • [6] Emerging Opportunities for Two-Dimensional Materials in Lithium-Ion Batteries
    Chen, Kan-Sheng
    Balla, Itamar
    Luu, Norman S.
    Hersam, Mark C.
    [J]. ACS ENERGY LETTERS, 2017, 2 (09): : 2026 - 2034
  • [7] A comparative study of M2CS2 and M2CO2 MXenes as anode materials for lithium ion batteries
    Chen, Zhenhua
    Huang, Shaowen
    Yuan, Xian
    Gan, Xianglai
    Zhou, Naigen
    [J]. APPLIED SURFACE SCIENCE, 2021, 544
  • [8] Potential anodic application of 2D h-AlC for Li and Na-ions batteries
    Chodvadiya, Darshil
    Jha, Ujjawal
    Spiewak, Piotr
    Kurzydlowski, Krzysztof J.
    Jha, Prafulla K.
    [J]. APPLIED SURFACE SCIENCE, 2022, 593
  • [9] Alkali Metal Intercalation in MXene/Graphene Heterostructures: A New Platform for Ion Battery Applications
    Demiroglu, Ilker
    Peeters, Francois M.
    Gulseren, Oguz
    Cakir, Deniz
    Sevik, Cem
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (04): : 727 - 734
  • [10] Conductive BSi4 monolayer with superior electrochemical performance for alkali metal ion batteries
    Du, Junliang
    Lin, He
    Huang, Yong
    [J]. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2024, 172