Herglotz-type vakonomic dynamics and its Noether symmetry for nonholonomic constrained systems

被引:0
作者
Huang, Li-Qin [1 ]
Zhang, Yi [2 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Math Sci, Suzhou 215009, Peoples R China
[2] Suzhou Univ Sci & Technol, Coll Civil Engn, Suzhou 215011, Peoples R China
基金
中国国家自然科学基金;
关键词
VARIATIONAL PRINCIPLE; CONSERVATION-LAWS; LIE SYMMETRY; THEOREM;
D O I
10.1063/5.0157564
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, Herglotz-type vakonomic dynamics and Noether theory of nonholonomic systems are studied. Firstly, Herglotz-type vakonomic dynamical equations for nonholonomic systems are derived on the premise of Herglotz variational principle. Secondly, in terms of the Herglotz-type vakonomic dynamical equations, the Noether symmetry of Herglotz-type vakonomic dynamics is explored, and the Herglotz-type vakonomic dynamical Noether theorems and their inverse theorems are deduced. Finally, the conservation laws of Appell-Hamel case with non-conservative forces are analyzed to show the validity of our results.
引用
收藏
页数:13
相关论文
共 49 条
  • [1] Variational Problems Involving a Caputo-Type Fractional Derivative
    Almeida, Ricardo
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 174 (01) : 276 - 294
  • [2] FRACTIONAL VARIATIONAL PRINCIPLE OF HERGLOTZ
    Almeida, Ricardo
    Malinowska, Agnieszka B.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (08): : 2367 - 2381
  • [3] Dynamical systems with non-integrable constraints, vakonomic mechanics, sub-Riemannian geometry, and non-holonomic mechanics
    Borisov, A. V.
    Mamaev, I. S.
    Bizyaev, I. A.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2017, 72 (05) : 783 - 840
  • [4] GEOMETRIC DESCRIPTION OF VAKONOMIC AND NONHOLONOMIC DYNAMICS. COMPARISON OF SOLUTIONS
    Cortes, J.
    de Leon, M.
    Martin de Diego, D.
    Martinez, S.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 41 (05) : 1389 - 1412
  • [5] The Herglotz Principle and Vakonomic Dynamics
    de Leon, Manuel
    Lainz, Manuel
    Munoz-Lecanda, Miguel C.
    [J]. GEOMETRIC SCIENCE OF INFORMATION (GSI 2021), 2021, 12829 : 183 - 190
  • [6] Optimal Control, Contact Dynamics and Herglotz Variational Problem
    de Leon, Manuel
    Lainz, Manuel
    Munoz-Lecanda, Miguel C.
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (01)
  • [7] Constrained Lagrangian dissipative contact dynamics
    de Leon, Manuel
    Lainz, Manuel
    Munoz-Lecanda, Miguel C.
    Roman-Roy, Narciso
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (12)
  • [8] Conserved quantities and adiabatic invariants of fractional Birkhoffian system of Herglotz type
    Ding, Juan-Juan
    Zhang, Yi
    [J]. CHINESE PHYSICS B, 2020, 29 (04)
  • [9] Ding N, 2006, COMMUN THEOR PHYS, V46, P265
  • [10] Herglotz-type principle and first integrals for nonholonomic systems in phase space
    Dong, Xin-Chang
    Zhang, Yi
    [J]. ACTA MECHANICA, 2023, 234 (12) : 6083 - 6095