Different effects of TiB2 particles on corrosion behaviors of in-situ TiB2/ 7075 composites in active and passive environments

被引:7
作者
Li, Keneng [1 ]
Wang, Zhiping [2 ]
Wang, Fangming [3 ]
Geng, Jiwei [1 ]
Li, Yugang [1 ,4 ]
Xia, Peikang [1 ,4 ]
Chen, Dong [1 ,4 ]
Wang, Haowei [1 ,4 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[2] Nanjing Univ Sci & Technol, Herbert Gleiter Inst Nanosci, Sch Mat Sci & Engn, Nanjing 210094, Peoples R China
[3] CNPC Engn Technol R&D Co Ltd, Beijing 102206, Peoples R China
[4] Huaibei Normal Univ, Anhui Prov Ind Gener Technol Res Ctr Alum Mat, Huaibei 235000, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Intergranular corrosion; Exfoliation corrosion; Metal matrix composites; In-situ observation; ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY; EXFOLIATION CORROSION; MECHANICAL-PROPERTIES; ALUMINUM-ALLOYS; HEAT-TREATMENT; AL; MICROSTRUCTURE; STRENGTH; CRACKING; PRECIPITATION;
D O I
10.1016/j.corsci.2024.112201
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The different effects of TiB2 on intergranular corrosion (IGC) and exfoliation corrosion (EXCO) in TiB2/7075 composites were investigated. Lower particle content accelerated IGC due to the first dissolution of large TiB2/Al interface precipitates, causing TiB2 deposition in corrosion channels. Conversely, higher particle content reduced the maximum IGC depth to 47 % with dense corrosion products inhibiting penetration of corrosive solution. EXCO weight loss increased by 271 % and 388 % with 3.5 wt% and 7 wt% particles, respectively. Micro-galvanic corrosion and recrystallization caused by particles reduced EXCO resistance. The passive IGC environment and active EXCO environment lead to different corrosion resistances of composites.
引用
收藏
页数:18
相关论文
共 74 条
[1]   Microstructure Evolution and Localized Corrosion Susceptibility of an Al-Zn-Mg-Cu-Zr 7xxx Alloy with Minor Cr Addition [J].
Akuata, Chijioke Kenneth ;
Gunawan, Feliksianus Robby ;
Suwanpinij, Piyada ;
Zander, Daniela .
MATERIALS, 2023, 16 (03)
[2]   Synergy of corrosion-induced micro-cracking and hydrogen embrittlement on the structural integrity of aluminium alloy (Al-Cu-Mg) 2024 [J].
Alexopoulos, Nikolaos D. ;
Charalampidou, Christina ;
Skarvelis, Panagiotis ;
Kourkoulis, Stavros K. .
CORROSION SCIENCE, 2017, 121 :32-42
[3]   Corrosion behaviour of different tempers of AA7075 aluminium alloy [J].
Andreatta, F ;
Terryn, H ;
de Wit, JHW .
ELECTROCHIMICA ACTA, 2004, 49 (17-18) :2851-2862
[4]  
[Anonymous], 2022, ASTM G110-92
[5]  
[Anonymous], 1999, ASTM G34-99
[6]  
[Anonymous], 2021, ASTM B918/B918M-20a
[7]   The role of hydrogen in microbiologically influenced corrosion and stress corrosion cracking [J].
Biezma, MV .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2001, 26 (05) :515-520
[8]   THE ANALYSIS OF ELECTRODE IMPEDANCES COMPLICATED BY THE PRESENCE OF A CONSTANT PHASE ELEMENT [J].
BRUG, GJ ;
VANDENEEDEN, ALG ;
SLUYTERSREHBACH, M ;
SLUYTERS, JH .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1984, 176 (1-2) :275-295
[9]   Electrochemical impedance spectroscopy analysis on aluminum alloys in EXCO solution [J].
Cao, FH ;
Zhang, Z ;
Su, JX ;
Zhang, JQ .
MATERIALS AND CORROSION-WERKSTOFFE UND KORROSION, 2005, 56 (05) :318-324
[10]   Impact toughness improvement of high-strength aluminium alloy by intrinsic and extrinsic fracture mechanisms via hot roll bonding [J].
Cepeda-Jimenez, C. M. ;
Garcia-Infantaa, J. M. ;
Pozueo, M. ;
Ruano, O. A. ;
Carreno, F. .
SCRIPTA MATERIALIA, 2009, 61 (04) :407-410