Algebraic properties of binomial edge ideals of Levi graphs associated with curve arrangements

被引:0
作者
Karmakar, Rupam [1 ]
Sarkar, Rajib [1 ]
Subramaniam, Aditya [2 ]
机构
[1] Indian Stat Inst, Stat Math Unit, 203 BT Rd, Kolkata 700108, India
[2] Indian Inst Sci Educ & Res Tirupati, Karakambadi Rd, Tirupati 517507, Andhra Pradesh, India
关键词
Binomial edge ideals; Regularity; Curve arrangements; Cohen-Macaulay; Levi graphs; Bipartite graphs; COHEN-MACAULAY; HARBOURNE CONSTANTS; CONFIGURATIONS; REGULARITY;
D O I
10.1016/j.jpaa.2024.107665
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study algebraic properties of binomial edge ideals of Levi graphs associated with certain plane curve arrangements. Using combinatorial properties of Levi graphs, we discuss the Cohen-Macaulayness of binomial edge ideals of Levi graphs associated to some curve arrangements in the complex projective plane, like the d -arrangement of curves and the conic-line arrangements. We also discuss the existence of certain induced cycles in the Levi graphs of these arrangements and obtain lower bounds for the regularity of powers of the corresponding binomial edge ideals. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 31 条
[1]   GRAPH CONNECTIVITY AND BINOMIAL EDGE IDEALS [J].
Banerjee, Arindam ;
Nunez-Betancourt, Luis .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (02) :487-499
[2]   Cohen-Macaulay binomial edge ideals of small graphs [J].
Bolognini, Davide ;
Macchia, Antonio ;
Rinaldo, Giancarlo ;
Strazzanti, Francesco .
JOURNAL OF ALGEBRA, 2024, 638 :189-213
[3]   Cohen-Macaulay binomial edge ideals and accessible graphs [J].
Bolognini, Davide ;
Macchia, Antonio ;
Strazzanti, Francesco .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 55 (04) :1139-1170
[4]   Binomial edge ideals of bipartite graphs [J].
Bolognini, Davide ;
Macchia, Antonio ;
Strazzanti, Francesco .
EUROPEAN JOURNAL OF COMBINATORICS, 2018, 70 :1-25
[5]   SELF-DUAL CONFIGURATIONS AND REGULAR GRAPHS [J].
COXETER, HSM .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 56 (05) :413-455
[6]  
de Bruijn N.G., 1948, NEDERL AKAD WETENSCH, V10, P421
[7]  
Dimca A, 2023, Arxiv, DOI arXiv:2305.01450
[8]   LINEAR FREE RESOLUTIONS AND MINIMAL MULTIPLICITY [J].
EISENBUD, D ;
GOTO, S .
JOURNAL OF ALGEBRA, 1984, 88 (01) :89-133
[9]   COHEN-MACAULAY BINOMIAL EDGE IDEALS [J].
Ene, Viviana ;
Herzog, Juergen ;
Hibi, Takayuki .
NAGOYA MATHEMATICAL JOURNAL, 2011, 204 :57-68
[10]  
Grayson D.R., Macaulay2, a software system for research in algebraic geometry