In Situ PL Tracking of Halide Exchange at 3D/QD Heterojunction Perovskite Solar Cells

被引:1
作者
Fonseca, Andre F. V. [1 ]
Scalon, Lucas [1 ]
Vale, Brener R. C. [2 ]
Guaita, Maria G. D. [1 ]
Bettini, Jefferson [3 ]
Brandao, Zeno C. [2 ]
Zagonel, Luiz F. [2 ]
Padilha, Lazaro A. [2 ]
Nogueira, Ana F. [1 ]
机构
[1] Univ Estadual Campinas UNICAMP, Inst Quim, BR-13083872 Campinas, SP, Brazil
[2] Univ Estadual Campinas UNICAMP, Inst Fis Gleb Wataghin, BR-13081970 Campinas, SP, Brazil
[3] Ctr Nacl Pesquisa Energia & Mat, Lab Nacl Nanotecnol, BR-13083970 Campinas, SP, Brazil
来源
ACS ENERGY LETTERS | 2024年 / 9卷 / 06期
关键词
ANION-EXCHANGE; CSPBBR3; NANOCRYSTALS; ION MIGRATION; CSPBX3; BR; CL; HYSTERESIS; INTERFACES; KINETICS; FILMS;
D O I
10.1021/acsenergylett.4c01268
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Perovskite solar cells (PSCs) show promise for future photovoltaic technology. However, it faces challenges in terms of environmental stability. To address this, researchers have proposed nanomaterials such as perovskite quantum dots (QDs) to passivate the perovskite interfaces and enhance their stability. We explore the halide exchange reaction at the heterojunction between QDs and bulk (3D) perovskites using in situ photoluminescence. By determining the activation energy for the interfacial bromide-to-iodide exchange, we find that it is effective in passivating the 3D surface defects and grain boundaries. When applied in solar cells, QDs have energy level realignment, improving hole extraction and blocking electron transfer, which reduces bimolecular charge carrier recombination, thus increasing efficiency. The interfacial halide composition remains stable under thermal stress, and the QDs' ligand hydrophobicity was found to prevent moisture permeation within the perovskite films. Thus, strategically incorporating QDs enhances photovoltaic performance and has the potential to mitigate moisture and thermal-induced degradation.
引用
收藏
页码:3177 / 3186
页数:10
相关论文
共 60 条
  • [41] Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I)
    Nedelcu, Georgian
    Protesescu, Loredana
    Yakunin, Sergii
    Bodnarchuk, Maryna I.
    Grotevent, Matthias J.
    Kovalenko, Maksym V.
    [J]. NANO LETTERS, 2015, 15 (08) : 5635 - 5640
  • [42] Ion Migration in Lead-Halide Perovskites: Cation Matters
    Niu, Kai
    Wang, Chenyang
    Zeng, Jiejun
    Wang, Zirui
    Liu, Yang
    Wang, Linjun
    Li, Cheng
    Jin, Yizheng
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (04) : 1006 - 1018
  • [43] Observation of Grain Boundary Passivation and Charge Distribution in Perovskite Films Improved with Anti-solvent Treatment
    Panigrahi, Shrabani
    Calmeiro, Tomas
    Mendes, Manuel J.
    Aguas, Hugo
    Fortunato, Elvira
    Martins, Rodrigo
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (45) : 19367 - 19375
  • [44] Controlled growth of perovskite layers with volatile alkylammonium chlorides
    Park, Jaewang
    Kim, Jongbeom
    Yun, Hyun-Sung
    Paik, Min Jae
    Noh, Eunseo
    Mun, Hyun Jung
    Kim, Min Gyu
    Shin, Tae Joo
    Seok, Sang Il
    [J]. NATURE, 2023, 616 (7958) : 724 - +
  • [45] Transforming Hybrid Organic Inorganic Perovskites by Rapid Halide Exchange
    Pellet, Norman
    Teuscher, Joel
    Maier, Joachim
    Graetzel, Michael
    [J]. CHEMISTRY OF MATERIALS, 2015, 27 (06) : 2181 - 2188
  • [46] Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut
    Protesescu, Loredana
    Yakunin, Sergii
    Bodnarchuk, Maryna I.
    Krieg, Franziska
    Caputo, Riccarda
    Hendon, Christopher H.
    Yang, Ruo Xi
    Walsh, Aron
    Kovalenko, Maksym V.
    [J]. NANO LETTERS, 2015, 15 (06) : 3692 - 3696
  • [47] Band Edge Energies and Excitonic Transition Probabilities of Colloidal CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals
    Ravi, Vikash Kumar
    Markad, Ganesh B.
    Nag, Angshuman
    [J]. ACS ENERGY LETTERS, 2016, 1 (04): : 665 - 671
  • [48] Thermodynamic Band Gap Model for Photoinduced Phase Segregation in Mixed-Halide Perovskites
    Ruth, Anthony
    Okrepka, Halyna
    Kamat, Prashant
    Kuno, Masaru
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (37) : 18547 - 18559
  • [49] Vacancy-Mediated Anion Photosegregation Kinetics in Mixed Halide Hybrid Perovskites: Coupled Kinetic Monte Carlo and Optical Measurements
    Ruth, Anthony
    Brennan, Michael C.
    Draguta, Sergiu
    Morozov, Yurii, V
    Zhukoyskyi, Maksym
    Janko, Boldizsar
    Zapol, Peter
    Kuno, Masaru
    [J]. ACS ENERGY LETTERS, 2018, 3 (10): : 2321 - 2328
  • [50] How organic chemistry can affect perovskite photovoltaics
    Scalon, Lucas
    Vaynzof, Yana
    Nogueira, Ana Flavia
    Oliveira, Caio C.
    [J]. CELL REPORTS PHYSICAL SCIENCE, 2023, 4 (05):