AN AREA THEOREM FOR HARMONIC MAPPINGS WITH NONZERO POLE HAVING QUASICONFORMAL EXTENSIONS

被引:3
作者
Bhowmik, Bappaditya [1 ]
Satpati, Goutam [1 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Math, Kharagpur 721302, India
关键词
Univalent mappings; meromorphic mappings; quasiconformal mappings; harmonic mappings;
D O I
10.1090/proc/16850
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Sigma(k )(H) ( p) be the class of sense-preserving univalent harmonic mappings defined on the open unit disk D of the complex plane with a simple pole at z = p is an element of (0 ,1) that have k-quasiconformal extensions (0 <= k < 1) onto the extended complex plane. In this article, we obtain an area theorem for this class of functions.
引用
收藏
页码:3881 / 3891
页数:11
相关论文
共 9 条
[1]   QUASICONFORMAL REFLECTIONS [J].
AHLFORS, LV .
ACTA MATHEMATICA, 1963, 109 (3-4) :291-301
[2]   QUASICONFORMAL EXTENSION OF MEROMORPHIC FUNCTIONS WITH NONZERO POLE [J].
Bhowmik, B. ;
Satpati, G. ;
Sugawa, T. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (06) :2593-2601
[3]  
CHICHRA PN, 1969, PROC CAMB PHILOS S-M, V66, P317
[4]   Some remarks on conformal representation. [J].
Gronwall, TH .
ANNALS OF MATHEMATICS, 1914, 16 :72-76
[5]  
HENGARTNER W, 1987, T AM MATH SOC, V299, P1
[6]  
Lehto L Olli, 1987, Graduate Texts in Mathematics, V109, DOI DOI 10.1007/978-1-4613-8652-0
[7]  
Lehto Olli., 1973, Die Grundlehren der Mathematischen Wissenschaften, V126
[8]  
Lehto Olli, 1971, ANN ACAD SCI FENN A1, V500, P10
[9]  
Mateljevic M., 2004, Publications de lInstitut Mathematique, nouvelle serie, V75, P147, DOI [10.2298/PIM0475147M, DOI 10.2298/PIM0475147M]