Knowledge transfer for learning subject-specific causal models

被引:0
|
作者
Rodriguez-Lopez, Veronica [1 ]
Enrique Sucar, Luis [2 ]
机构
[1] Univ Tecnol Mixteca, Oaxaca, Oaxaca, Mexico
[2] Inst Nacl Astrofis Opt & Electr, Puebla, Mexico
关键词
Causal discovery; Probabilistic graphical models; Subject-specific causal models; Transfer learning; INFERENCE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Subject-specific causal models are appropriate for domains such as biology, medicine, and neuroscience, where the causal relations vary across the individuals of a population. However, its learning could be challenging, particularly under limited data sets. Although some works have addressed this issue, they are restricted to discovering up to Markov equivalence classes. In this work, we propose a method for the causal relations identification of subject-specific models. We hypothesized that transferring related data sets and locally performing interventions improves the causal direction identification of relations. The experimental results on true and imperfect Markov equivalence classes of synthetic causal Bayesian networks show that our method performing interventions over several subsets of the candidate parents and using related data according to their differences with target, recovers a higher number of correct oriented edges.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Protocol for constructing subject-specific biomechanical models of knee joint
    Yang, N. H.
    Canavan, P. K.
    Nayeb-Hashemi, H.
    Najafi, B.
    Vaziri, A.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2010, 13 (05) : 589 - 603
  • [22] Subject-specific treatment of obesity
    Vogels, N
    Westerterp-Plantenga, MS
    INTERNATIONAL JOURNAL OF OBESITY, 2004, 28 : S224 - S224
  • [23] How subject-(in) dependent is general pedagogical knowledge? Measurement invariance and subject-specific differences
    Lohse-Bossenz, Hendrik
    Holzberger, Doris
    Kunina-Habenicht, Olga
    Seidel, Tina
    Kunter, Mareike
    ZEITSCHRIFT FUR ERZIEHUNGSWISSENSCHAFT, 2018, 21 (05): : 991 - 1019
  • [24] Representation of bone heterogeneity in subject-specific finite element models for knee
    Au, Anthony G.
    Liggins, Adrian B.
    Raso, V. James
    Carey, Jason
    Amirfazli, A.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2010, 99 (02) : 154 - 171
  • [25] Image driven subject-specific finite element models of spinal biomechanics
    Zanjani-Pour, Sahand
    Winlove, C. Peter
    Smith, Christopher W.
    Meakin, Judith R.
    JOURNAL OF BIOMECHANICS, 2016, 49 (06) : 919 - 925
  • [26] Sensitivity of subject-specific models to errors in musculo-skeletal geometry
    Carbone, V.
    van der Krogt, M. M.
    Koopman, H. F. J. M.
    Verdonschot, N.
    JOURNAL OF BIOMECHANICS, 2012, 45 (14) : 2476 - 2480
  • [27] Instantaneous Generation of Subject-Specific Finite Element Models of the Hip Capsule
    Anantha-Krishnan, Ahilan
    Myers, Casey A.
    Fitzpatrick, Clare K.
    Clary, Chadd W.
    BIOENGINEERING-BASEL, 2024, 11 (01):
  • [28] Estimation of Future Glucose Concentrations with Subject-Specific Recursive Linear Models
    Eren-Oruklu, Meriyan
    Cinar, Ali
    Quinn, Lauretta
    Smith, Donald
    DIABETES TECHNOLOGY & THERAPEUTICS, 2009, 11 (04) : 243 - 253
  • [29] Validation of subject-specific cardiovascular system models from porcine measurements
    Revie, James A.
    Stevenson, David J.
    Chase, J. Geoffrey
    Hann, Christopher E.
    Lambermont, Bernard C.
    Ghuysen, Alexandre
    Kolh, Philippe
    Shaw, Geoffrey M.
    Heldmann, Stefan
    Desaive, Thomas
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 109 (02) : 197 - 210
  • [30] Validation and evaluation of subject-specific finite element models of the pediatric knee
    Ayda Karimi Dastgerdi
    Amir Esrafilian
    Christopher P. Carty
    Azadeh Nasseri
    Alireza Yahyaiee Bavil
    Martina Barzan
    Rami K. Korhonen
    Ivan Astori
    Wayne Hall
    David John Saxby
    Scientific Reports, 13