The regularity with respect to domains of the additive eigenvalues of superquadratic Hamilton-Jacobi equation

被引:2
作者
Bozorgnia, Farid [1 ]
Kwon, Dohyun [2 ]
Tu, Son N. T. [3 ]
机构
[1] Inst Super Tecn, Dept Math, CAMGSD, Lisbon, Portugal
[2] Univ Seoul, Dept Math, 163 Seoulsiripdaero, Seoul 02504, South Korea
[3] Michigan State Univ, Dept Math, 619 Red Cedar Rd East, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
Second-order Hamilton-Jacobi equations; State-constraint problems; Optimal control theory; Rate of convergence; Viscosity solutions; Semiconcavity; VANISHING DISCOUNT PROBLEM; BEHAVIOR;
D O I
10.1016/j.jde.2024.05.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the additive eigenvalues on changing domains, along with the associated vanishing discount problems. We consider the convergence of the vanishing discount problem on changing domains for a general scaling type Omega(lambda) =(1 + r(lambda))Omega with a continuous function rand a positive constant lambda. We characterize all solutions to the ergodic problem on Omega in terms of r. In addition, we demonstrate that the additive eigenvalue lambda bar right arrow c(Omega lambda) on a rescaled domain Omega(lambda)=(1 + lambda)Omega possesses one-sided derivatives everywhere. Additionally, the limiting solution can be parameterized by a real function, and we establish a connection between the regularity of this real function and the regularity of lambda bar right arrowc(Omega lambda). We provide examples where higher regularity is achieved. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:518 / 553
页数:36
相关论文
共 35 条
  • [21] The vanishing discount problem and viscosity Mather measures. Part 2: Boundary value problems
    Ishii, Hitoshi
    Mitake, Hiroyoshi
    Tran, Hung V.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 108 (03): : 261 - 305
  • [22] The vanishing discount problem and viscosity Mather measures. Part 1: The problem on a torus
    Ishii, Hitoshi
    Mitake, Hiroyoshi
    Tran, Hung V.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 108 (02): : 125 - 149
  • [23] STATE-CONSTRAINT STATIC HAMILTON-JACOBI EQUATIONS IN NESTED DOMAINS
    Kim, Yeoneung
    Tran, Hung V.
    Tu, Son N.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (05) : 4161 - 4184
  • [24] Koike S, 2014, Mathematical Society of Japan Memoirs, V13
  • [25] NONLINEAR ELLIPTIC-EQUATIONS WITH SINGULAR BOUNDARY-CONDITIONS AND STOCHASTIC-CONTROL WITH STATE CONSTRAINTS .1. THE MODEL PROBLEM
    LASRY, JM
    LIONS, PL
    [J]. MATHEMATISCHE ANNALEN, 1989, 283 (04) : 583 - 630
  • [26] Selection problems for a discount degenerate viscous Hamilton-Jacobi equation
    Mitake, Hiroyoshi
    Tran, Hung V.
    [J]. ADVANCES IN MATHEMATICS, 2017, 306 : 684 - 703
  • [27] Sokolowski J., 1992, Introduction to Shape Optimization
  • [28] OPTIMAL-CONTROL WITH STATE-SPACE CONSTRAINT-I
    SONER, HM
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (03) : 552 - 561
  • [29] OPTIMAL-CONTROL WITH STATE-SPACE CONSTRAINT-II
    SONER, HM
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (06) : 1110 - 1122
  • [30] Stromberg K., 1965, REAL ABSTRACT ANAL M