The regularity with respect to domains of the additive eigenvalues of superquadratic Hamilton-Jacobi equation

被引:2
作者
Bozorgnia, Farid [1 ]
Kwon, Dohyun [2 ]
Tu, Son N. T. [3 ]
机构
[1] Inst Super Tecn, Dept Math, CAMGSD, Lisbon, Portugal
[2] Univ Seoul, Dept Math, 163 Seoulsiripdaero, Seoul 02504, South Korea
[3] Michigan State Univ, Dept Math, 619 Red Cedar Rd East, E Lansing, MI 48824 USA
基金
美国国家科学基金会;
关键词
Second-order Hamilton-Jacobi equations; State-constraint problems; Optimal control theory; Rate of convergence; Viscosity solutions; Semiconcavity; VANISHING DISCOUNT PROBLEM; BEHAVIOR;
D O I
10.1016/j.jde.2024.05.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the additive eigenvalues on changing domains, along with the associated vanishing discount problems. We consider the convergence of the vanishing discount problem on changing domains for a general scaling type Omega(lambda) =(1 + r(lambda))Omega with a continuous function rand a positive constant lambda. We characterize all solutions to the ergodic problem on Omega in terms of r. In addition, we demonstrate that the additive eigenvalue lambda bar right arrow c(Omega lambda) on a rescaled domain Omega(lambda)=(1 + lambda)Omega possesses one-sided derivatives everywhere. Additionally, the limiting solution can be parameterized by a real function, and we establish a connection between the regularity of this real function and the regularity of lambda bar right arrowc(Omega lambda). We provide examples where higher regularity is achieved. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:518 / 553
页数:36
相关论文
共 35 条
  • [1] Alessio P, 2006, ADV NONLINEAR STUD, V6, P351
  • [2] Viscosity solutions of general viscous Hamilton-Jacobi equations
    Armstrong, Scott N.
    Tran, Hung V.
    [J]. MATHEMATISCHE ANNALEN, 2015, 361 (3-4) : 647 - 687
  • [3] Gradient blow-up rates and sharp gradient estimates for diffusive Hamilton-Jacobi equations
    Attouchi, Amal
    Souplet, Philippe
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (05)
  • [4] Bardi M., 1997, Optimal control and viscosity solutions of HamiltonJacobiBellman equations, DOI [DOI 10.1007/978-0-8176-4755-1, 10.1007/978-0-8176-4755-1]
  • [5] On the generalized Dirichlet problem for viscous Hamilton-Jacobi equations
    Barles, G
    Da Lio, F
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (01): : 53 - 75
  • [6] Barles G., 1994, Solutions de Viscosite des equations de Hamilton-Jacobi, V17
  • [7] On the large time behavior of solutions of the Dirichlet problem for subquadratic viscous Hamilton-Jacobi equations
    Barles, Guy
    Porretta, Alessio
    Tchamba, Thierry Tabet
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (05): : 497 - 519
  • [8] A short proof of the C0,α-regularity of viscosity subsolutions for superquadratic viscous Hamilton-Jacobi equations and applications
    Barles, Guy
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (01) : 31 - 47
  • [9] Bruckner A.M., 1978, DIFFERENTIATION REAL
  • [10] HAMILTON-JACOBI EQUATIONS WITH STATE CONSTRAINTS
    CAPUZZODOLCETTA, I
    LIONS, PL
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 318 (02) : 643 - 683