Exploiting Model Sparsity in Adaptive MPC: A Compressed Sensing Viewpoint

被引:0
作者
Bujarbaruah, Monimoy [1 ]
Vallon, Charlott [1 ]
机构
[1] 2169 Etcheverry Hall, Berkeley, CA 94720 USA
来源
LEARNING FOR DYNAMICS AND CONTROL, VOL 120 | 2020年 / 120卷
关键词
Adaptive MPC; Finite Impulse Response; Kalman Filtering; Convex Optimization; Compressed Sensing; PREDICTIVE CONTROL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an Adaptive Stochastic Model Predictive Control (MPC) strategy for stable linear time-invariant systems in the presence of bounded disturbances. We consider multi-input, multi-output systems that can be expressed by a Finite Impulse Response (FIR) model. The parameters of the FIR model corresponding to each output are unknown but assumed sparse. We estimate these parameters using the Recursive Least Squares algorithm. The estimates are then improved using set-based bounds obtained by solving the Basis Pursuit Denoising Chen et al. (2001) problem. Our approach is able to handle hard input constraints and probabilistic output constraints. Using tools from distributionally robust optimization, we reformulate the probabilistic output constraints as tractable convex second-order cone constraints, which enables us to pose our MPC design task as a convex optimization problem. The efficacy of the developed algorithm is highlighted with a thorough numerical example, where we demonstrate performance gain over the counterpart algorithm of Bujarbaruah et al. (2018), which does not utilize the sparsity information of the system impulse response parameters during control design.
引用
收藏
页码:137 / 146
页数:10
相关论文
共 24 条
[1]  
[Anonymous], 1979, Optimal Filtering
[2]  
Benesty J, 2006, SIG COM TEC, P125
[3]   Set invariance in control [J].
Blanchini, F .
AUTOMATICA, 1999, 35 (11) :1747-1767
[4]  
Borrelli F., 2017, Predictive Control for Linear and Hybrid Systems, DOI [DOI 10.1017/9781139061759, 10.1017/9781139061759]
[5]  
Bujarbaruah M, 2019, Arxiv, DOI arXiv:1912.04408
[6]  
Bujarbaruah M, 2021, Arxiv, DOI arXiv:1909.13473
[7]  
Bujarbaruah M, 2018, P AMER CONTR CONF, P2312, DOI 10.23919/ACC.2018.8431586
[8]   On distributionally robust chance-constrained linear programs [J].
Calafiore, G. C. ;
El Ghaoui, L. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 130 (01) :1-22
[9]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[10]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61