Space-time error estimates for approximations of linear parabolic problems with generalized time boundary conditions

被引:0
作者
Arendt, W. [1 ]
Chalendar, I [2 ]
Eymard, R. [2 ]
机构
[1] Univ Ulm, Inst Appl Anal, Helmholtz Str 18, D-89069 Ulm, Germany
[2] Univ Gustave Eiffel, LAMA, UPEM, UPEC,CNRS,UMR 8050, Marne la Vallee, France
关键词
linear parabolic problems; space-time discretization; Galerkin method; BNB inequality; Euler theta-scheme; time discontinuous Galerkin scheme; EQUATIONS; REGULARITY;
D O I
10.1093/imanum/drae028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first give a general error estimate for the nonconforming approximation of a problem for which a Banach-Ne & ccaron;as-Babu & scaron;ka (BNB) inequality holds. This framework covers parabolic problems with general conditions in time (initial value problems as well as periodic problems) under minimal regularity assumptions. We consider approximations by two types of space-time discretizations, both based on a conforming Galerkin method in space. The first one is the Euler $\theta -$scheme. In this case, we show that the BNB inequality is always satisfied, and may require an extra condition on the time step for $\theta \le \frac 1 2$. The second one is the time discontinuous Galerkin method, where the BNB condition holds without any additional condition.
引用
收藏
页码:1173 / 1225
页数:53
相关论文
共 24 条
  • [1] Lions? representation theorem and applications
    Arendt, W.
    Chalendar, I.
    Eymard, R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 522 (02)
  • [2] Galerkin approximation of linear problems in Banach and Hilbert spaces
    Arendt, W.
    Chalendar, I
    Eymard, R.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (01) : 165 - 198
  • [3] Arendt W., 2023, PARTIAL DIFFERENTIAL
  • [4] Fully discrete best-approximation-type estimates in L∞ (I;L2(ω)d) for finite element discretizations of the transient Stokes equations
    Behringer, Niklas
    Vexler, Boris
    Leykekhman, Dmitriy
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 43 (02) : 852 - 880
  • [5] LOW-RANK APPROXIMATION OF LINEAR PARABOLIC EQUATIONS BY SPACE-TIME TENSOR GALERKIN METHODS
    Boiveau, Thomas
    Ehrlacher, Virginie
    Ern, Alexandre
    Nouy, Anthony
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (02): : 635 - 658
  • [6] Braack M, 2004, NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, PROCEEDINGS, P159
  • [7] Cea J., 1964, Annales de l'institut Fourier, V14, P345, DOI 10.5802/aif.181
  • [8] Error estimates for semidiscrete finite element approximations of linear and semilinear parabolic equations under minimal regularity assumptions
    Chrysafinos, K
    Hou, LS
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (01) : 282 - 306
  • [9] Partial differential equations of mathematical physics
    Courant, R
    Friedrichs, K
    Lewy, H
    [J]. MATHEMATISCHE ANNALEN, 1928, 100 : 32 - 74
  • [10] Dautray R., 2000, MATH ANAL NUMERICAL