Tracking amyotrophic lateral sclerosis disease progression using passively collected smartphone sensor data

被引:4
作者
Karas, Marta [1 ]
Olsen, Julia [1 ]
Straczkiewicz, Marcin [1 ]
Johnson, Stephen A. [2 ]
Burke, Katherine M. [3 ,4 ]
Iwasaki, Satoshi [5 ]
Lahav, Amir [5 ]
Scheier, Zoe A. [3 ,4 ]
Clark, Alison P. [3 ,4 ]
Iyer, Amrita S. [3 ,4 ]
Huang, Emily [6 ]
Berry, James D. [3 ,4 ]
Onnela, Jukka-Pekka [1 ]
机构
[1] Harvard Univ, Harvard TH Chan Sch Publ Hlth, Dept Biostat, 677 Huntington Ave, Boston, MA 02115 USA
[2] Mayo Clin, Dept Neurol, 13400 E Shea Blvd, Scottsdale, AZ 85259 USA
[3] Massachusetts Gen Hosp, Neurol Clin Res Inst, 15 Parkman St 835, Boston, MA 02114 USA
[4] Massachusetts Gen Hosp, Sean M Healey & AMG Ctr ALS, 15 Parkman St 835, Boston, MA 02114 USA
[5] Mitsubishi Tanabe Pharm Holdings America Inc, 525 Washington Blvd, Jersey City, NJ 07310 USA
[6] Wake Forest Univ, Dept Stat Sci, Winston Salem, NC 27106 USA
关键词
ALSFRS-R;
D O I
10.1002/acn3.52050
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Passively collected smartphone sensor data provide an opportunity to study physical activity and mobility unobtrusively over long periods of time and may enable disease monitoring in people with amyotrophic lateral sclerosis (PALS). Methods: We enrolled 63 PALS who used Beiwe mobile application that collected their smartphone accelerometer and GPS data and administered the self-entry ALS Functional Rating Scale-Revised (ALSFRS-RSE) survey. We identified individual steps from accelerometer data and used the Activity Index to summarize activity at the minute level. Walking, Activity Index, and GPS outcomes were then aggregated into day-level measures. We used linear mixed effect models (LMMs) to estimate baseline and monthly change for ALSFRS-RSE scores (total score, subscores Q1-3, Q4-6, Q7-9, Q10-12) and smartphone sensor data measures, as well as the associations between them. Findings: The analytic sample (N = 45) was 64.4% male with a mean age of 60.1 years. The mean observation period was 292.3 days. The ALSFRS-RSE total score baseline mean was 35.8 and had a monthly rate of decline of -0.48 (p-value <0.001). We observed statistically significant change over time and association with ALSFRS-RSE total score for four smartphone sensor data-derived measures: walking cadence from top 1 min and log-transformed step count, step count from top 1 min, and Activity Index from top 1 min. Interpretation: Smartphone sensors can unobtrusively track physical changes in PALS, potentially aiding disease monitoring and future research.
引用
收藏
页码:1380 / 1392
页数:13
相关论文
共 40 条
[1]  
[Anonymous], 2024, MOB FACT SHEET
[2]   An Activity Index for Raw Accelerometry Data and Its Comparison with Other Activity Metrics [J].
Bai, Jiawei ;
Di, Chongzhi ;
Xiao, Luo ;
Evenson, Kelly R. ;
LaCroix, Andrea Z. ;
Crainiceanu, Ciprian M. ;
Buchner, David M. .
PLOS ONE, 2016, 11 (08)
[3]   Inferring mobility measures from GPS traces with missing data [J].
Barnett, Ian ;
Onnela, Jukka-Pekka .
BIOSTATISTICS, 2020, 21 (02) :E98-E112
[4]   How common are ALS plateaus and reversals? [J].
Bedlack, Richard S. ;
Vaughan, Timothy ;
Wicks, Paul ;
Heywood, Jamie ;
Sinani, Ervin ;
Selsov, Roger ;
Macklin, Eric A. ;
Schoenfeld, David ;
Cudkowicz, Merit ;
Sherman, Alex .
NEUROLOGY, 2016, 86 (09) :808-812
[5]   Design and results of a smartphone-based digital phenotyping study to quantify ALS progression [J].
Berry, James D. ;
Paganoni, Sabrina ;
Carlson, Kenzie ;
Burke, Katherine ;
Weber, Harli ;
Staples, Patrick ;
Salinas, Joel ;
Chan, James ;
Green, Jordan R. ;
Connaghan, Kathryn ;
Barback, Josh ;
Onnela, Jukka Pekka .
ANNALS OF CLINICAL AND TRANSLATIONAL NEUROLOGY, 2019, 6 (05) :873-881
[6]   Using Smartphones to Reduce Research Burden in a Neurodegenerative Population and Assessing Participant Adherence: A Randomized Clinical Trial and Two Observational Studies [J].
Beukenhorst, Anna L. ;
Burke, Katherine M. ;
Scheier, Zoe ;
Miller, Timothy M. ;
Paganoni, Sabrina ;
Keegan, Mackenzie ;
Collins, Ella ;
Connaghan, Kathryn P. ;
Tay, Anna ;
Chan, James ;
Berry, James D. ;
Onnela, Jukka-Pekka .
JMIR MHEALTH AND UHEALTH, 2022, 10 (02)
[8]   The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function [J].
Cedarbaum, JM ;
Stambler, N ;
Malta, E ;
Fuller, C ;
Hilt, D ;
Thurmond, B ;
Nakanishi, A .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 1999, 169 (1-2) :13-21
[9]   Patterns of Use and Key Predictors for the Use of Wearable Health Care Devices by US Adults: Insights from a National Survey [J].
Chandrasekaran, Ranganathan ;
Katthula, Vipanchi ;
Moustakas, Evangelos .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2020, 22 (10)
[10]   Patient reported outcome measures (PROMs) in amyotrophic lateral sclerosis [J].
De Marchi, Fabiola ;
Berry, James D. ;
Chan, James ;
Caldwell, Sarah ;
Ellrodt, Amy ;
Scalia, Jennifer ;
Burke, Katherine ;
Fang, Ton ;
Clark Sisodia, Rachel ;
Schwamm, Lee H. ;
Moura, Lidia M. V. R. ;
Paganoni, Sabrina .
JOURNAL OF NEUROLOGY, 2020, 267 (06) :1754-1759