Semisimple modules that are small cyclic in their injective envelopes

被引:1
作者
Kir, Emine Onal [1 ]
Tuerkmen, Erguel [2 ]
机构
[1] Kirsehir Ahi Evran Univ, Dept Math, Kirsehir, Turkiye
[2] Amasya Univ, Dept Math, Amasya, Turkiye
关键词
Module with (S-s*); s-cosingular module; left ss-Harada rings; left V-rings; QF-rings; RINGS; SUBMODULES;
D O I
10.1142/S1793557124500426
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents the fundamental characteristics of s-cosingular modules, which constitute semisimple and small submodules within an injective module. We establish that over a commutative Kasch ring S, each (semi) simple S-module is s-cosingular if and only if each maximal ideal of S is essential in S. Furthermore, we delve into the examination of modules that fulfill the condition of (S-s*). We provide several characterizations of rings using these modules. Specifically, we show that a ring S is left ss-Harada if and only if each left S-module verifies (S-s*).
引用
收藏
页数:18
相关论文
共 24 条
[1]  
Anderson F.W., 1992, RINGS CATEGORIES MOD
[2]  
Büyükasik E, 2010, REND SEMIN MAT U PAD, V124, P157
[4]   WHEN IS A SELF-INJECTIVE SEMIPERFECT RING QUASI-FROBENIUS [J].
CLARK, J ;
VANHUYNH, D .
JOURNAL OF ALGEBRA, 1994, 165 (03) :531-542
[5]  
Clark J, 2006, FRONT MATH, P1
[6]  
Dung N. V., 1994, PUTMAN RES NOTES MAT
[7]   SS-LIFTING MODULES AND RINGS [J].
Eryilmaz, Figen .
MISKOLC MATHEMATICAL NOTES, 2021, 22 (02) :655-662
[8]  
Faith C., 1976, ALGEBRA 2 RING THEOR
[9]  
Goodearl K.R., 1976, RING THEORY
[10]  
Harada M., 1979, RING THEORY, P669