A Very High-Order Compact Difference Method for Wall-Bounded Flows

被引:0
作者
Caban, L. [1 ]
Tyliszczak, A. [1 ]
Abide, S. [2 ]
Domaradzki, J. A. [3 ]
机构
[1] Czestochowa Tech Univ, Al Armii Krajowej 21, PL-42201 Czestochowa, Poland
[2] Univ Perpignan Via Domitia, 52 Ave Paul Alduy, F-66100 Perpignan, France
[3] Univ Southern Calif, Los Angeles, CA 90007 USA
来源
INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022 | 2024年 / 3094卷
关键词
SCHEMES;
D O I
10.1063/5.0210442
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we formulate and analyze high-order compact finite difference schemes for the approximation of derivatives in boundary and near boundary computational nodes. It has been shown that the proposed schemes, although unstable for hyperbolic problems, turn out to be stable and accurate for the parabolic vorticity-stream function equation describing fluid flow problems. The results obtained for the Burggraf flow and the lid-driven cavity flows agree very well with the analytical solutions and literature data.
引用
收藏
页数:4
相关论文
共 11 条
[1]   The 2D lid-driven cavity problem revisited [J].
Bruneau, CH ;
Saad, M .
COMPUTERS & FLUIDS, 2006, 35 (03) :326-348
[2]   High-order compact difference schemes on wide computational stencils with a spectral-like accuracy [J].
Caban, Lena ;
Tyliszczak, Artur .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 108 :123-140
[3]  
Carpenter D. G. M. H., 1993, Appl Numer Math, V12
[4]  
KAWAMURA T, 1985, LECT NOTES PHYS, V218, P291
[5]   High-order compact schemes for incompressible flows: A simple and efficient method with quasi-spectral accuracy [J].
Laizet, Sylvain ;
Lamballais, Eric .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (16) :5989-6015
[6]   COMPACT FINITE-DIFFERENCE SCHEMES WITH SPECTRAL-LIKE RESOLUTION [J].
LELE, SK .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 103 (01) :16-42
[7]   A fourth-order-accurate finite volume compact method for the incompressible Navier-Stokes solutions [J].
Pereira, JMC ;
Kobayashi, MH ;
Pereira, JCF .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 167 (01) :217-243
[8]   Flux-difference splitting-based upwind compact schemes for the incompressible Navier-Stokes equations [J].
Shah, Abdullah ;
Yuan, Li .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 61 (05) :552-568
[9]   Numerical stability of unsteady stream-function vorticity calculations [J].
Sousa, E ;
Sobey, IJ .
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2003, 19 (06) :407-419
[10]   On the order of accuracy for difference approximations of initial-boundary value problems [J].
Svard, Magnus ;
Nordstrom, Jan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 218 (01) :333-352