Benchmarking Quantum Generative Learning: A Study on Scalability and Noise Resilience using QUARK

被引:1
作者
Kiwit, Florian J. [1 ,2 ]
Wolf, Maximilian A. [1 ,2 ]
Marso, Marwa [1 ,2 ,3 ]
Ross, Philipp [2 ]
Lorenz, Jeanette M. [1 ,4 ]
Riofrio, Carlos A. [2 ]
Luckow, Andre [1 ,2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Munich, Germany
[2] BMW Grp, Munich, Germany
[3] Tech Univ, Munich, Germany
[4] Fraunhofer Inst Cognit Syst IKS, Munich, Germany
来源
KUNSTLICHE INTELLIGENZ | 2024年
关键词
Quantum computing; Machine learning; Noise resilience; Generative modeling; Benchmark framework;
D O I
10.1007/s13218-024-00864-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantum computing promises a disruptive impact on machine learning algorithms, taking advantage of the exponentially large Hilbert space available. However, it is not clear how to scale quantum machine learning (QML) to industrial-level applications. This paper investigates the scalability and noise resilience of quantum generative learning applications. We consider the training performance in the presence of statistical noise due to finite-shot noise statistics and quantum noise due to decoherence to analyze the scalability of QML methods. We employ rigorous benchmarking techniques to track progress and identify challenges in scaling QML algorithms, and show how characterization of QML systems can be accelerated, simplified, and made reproducible when the QUARK framework is used. We show that QGANs are not as affected by the curse of dimensionality as QCBMs and to which extent QCBMs are resilient to noise.
引用
收藏
页码:379 / 385
页数:7
相关论文
共 40 条
[1]  
Amico Mirko, 2023, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), P692, DOI 10.1109/QCE57702.2023.00084
[2]  
[Anonymous], 2023, Qiskit: An open-source framework for quantum computing
[3]   Parameterized quantum circuits as machine learning models [J].
Benedetti, Marcello ;
Lloyd, Erika ;
Sack, Stefan ;
Fiorentini, Mattia .
QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (04)
[4]   A generative modeling approach for benchmarking and training shallow quantum circuits [J].
Benedetti, Marcello ;
Garcia-Pintos, Delfina ;
Perdomo, Oscar ;
Leyton-Ortega, Vicente ;
Nam, Yunseong ;
Perdomo-Ortiz, Alejandro .
NPJ QUANTUM INFORMATION, 2019, 5 (1)
[5]  
Bergholm V, 2022, Arxiv, DOI [arXiv:1811.04968, 10.48550/arXiv.1811.04968]
[6]   A volumetric framework for quantum computer benchmarks [J].
Blume-Kohout, Robin ;
Young, Kevin .
QUANTUM, 2020, 4
[7]  
Bowles J., 2024, Better than classical? The subtle art of benchmarking quantum machine learning models
[8]   Validating quantum computers using randomized model circuits [J].
Cross, Andrew W. ;
Bishop, Lev S. ;
Sheldon, Sarah ;
Nation, Paul D. ;
Gambetta, Jay M. .
PHYSICAL REVIEW A, 2019, 100 (03)
[9]   Quantum certification and benchmarking [J].
Eisert, Jens ;
Hangleiter, Dominik ;
Walk, Nathan ;
Roth, Ingo ;
Markham, Damian ;
Parekh, Rhea ;
Chabaud, Ulysse ;
Kashefi, Elham .
NATURE REVIEWS PHYSICS, 2020, 2 (07) :382-390
[10]   Characterizing large-scale quantum computers via cycle benchmarking [J].
Erhard, Alexander ;
Wallman, Joel J. ;
Postler, Lukas ;
Meth, Michael ;
Stricker, Roman ;
Martinez, Esteban A. ;
Schindler, Philipp ;
Monz, Thomas ;
Emerson, Joseph ;
Blatt, Rainer .
NATURE COMMUNICATIONS, 2019, 10 (1)