Reconstruction of gene regulatory networks using graph neural networks

被引:1
|
作者
Paul, M. Emma [1 ]
Jereesh, A. S. [1 ]
Kumar, G. Santhosh [1 ]
机构
[1] Cochin Univ Sci & Technol, Dept Comp Sci, Bioinformat Lab, Kalamassery 682022, India
关键词
Gene expression; Gene regulatory network; Graph neural network; Semi-supervised edge classification; INFERENCE; DISCOVERY;
D O I
10.1016/j.asoc.2024.111899
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gene regulatory network (GRN) inference, a longstanding challenge in computational biology, aims to construct GRNs from genomic data. Graph Neural Networks (GNNs) are well-suited for this task due to their ability to leverage both node features and topological relationships. This research systematically evaluated various GNN variants, gradually narrowing the focus through a filtering process. The study considered multiple design aspects, including layers, epochs, decoders, activation functions, graph structures, aggregation methods, skip connections, dropout, and hidden dimensions. Ultimately, two promising models emerged, one based on the Chebyshev spectral graph convolutional operator and the other on the Hypergraph convolutional operator, demonstrating state-of-the-art performance. Notably, hypergraphs demonstrated superior performance on real datasets with higher-order dependencies, while the Chebyshev model showed greater generalization across both simulated and real datasets. The code for this research is available online at https://github.com/EmmaDPaul/ GRN-inference-using-GNN.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Reconstruction of Gene Regulatory Networks Using Multiple Datasets
    Saremi, Mehrzad
    Amirmazlaghani, Maryam
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (03) : 1827 - 1839
  • [2] Reconstruction of Neutrino Events in IceCube using Graph Neural Networks
    Abbasi, R.
    Ackermann, M.
    Adams, J.
    Aguilar, J. A.
    Ahlers, M.
    Ahrens, M.
    Alispach, C.
    Alves, A. A., Jr.
    Amin, N. M.
    An, R.
    Andeen, K.
    Anderson, T.
    Anton, G.
    Arguelles, C.
    Ashida, Y.
    Axani, S.
    Bai, X.
    Balagopal, A., V
    Barbano, A.
    Barwick, S. W.
    Bastian, B.
    Basu, V.
    Baur, S.
    Bay, R.
    Beatty, J. J.
    Becker, K. -H.
    Tjus, J. Becker
    Bellenghi, C.
    BenZvi, S.
    Berley, D.
    Bernardini, E.
    Besson, D. Z.
    Binder, G.
    Bindig, D.
    Blaufuss, E.
    Blot, S.
    Boddenberg, M.
    Bontempo, F.
    Borowka, J.
    Boser, S.
    Botner, O.
    Bottcher, J.
    Bourbeau, E.
    Bradascio, F.
    Braun, J.
    Bron, S.
    Brostean-Kaiser, J.
    Browne, S.
    Burgman, A.
    Burley, R. T.
    37TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2021, 2022,
  • [3] Towards the reconstruction of gene regulatory networks
    Tobin, FL
    Damian-Iordache, V
    Greller, LD
    1999 INTERNATIONAL CONFERENCE ON MODELING AND SIMULATION OF MICROSYSTEMS, 1999, : 49 - 53
  • [4] Construction of Gene Regulatory Networks Using Recurrent Neural Networks and Swarm Intelligence
    Khan, Abhinandan
    Mandal, Sudip
    Pal, Rajat Kumar
    Saha, Goutam
    SCIENTIFICA, 2016, 2016
  • [5] Reconstruction of Gene Regulatory Networks Using State Space Model
    Wu, Xi
    Wang, Nan
    Zhang, Chaoyang
    Gong, Ping
    2011 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS, 2011, : 1054 - 1056
  • [6] Exact reconstruction of gene regulatory networks using compressive sensing
    Young Hwan Chang
    Joe W Gray
    Claire J Tomlin
    BMC Bioinformatics, 15
  • [7] Exact reconstruction of gene regulatory networks using compressive sensing
    Chang, Young Hwan
    Gray, Joe W.
    Tomlin, Claire J.
    BMC BIOINFORMATICS, 2014, 15
  • [8] Inductive inference of gene regulatory network using supervised and semi-supervised graph neural networks
    Wang, Juexin
    Ma, Anjun
    Ma, Qin
    Xu, Dong
    Joshi, Trupti
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 (18): : 3335 - 3343
  • [9] geneDRAGNN: Gene Disease Prioritization using Graph Neural Networks
    Altabaa, Awni
    Huang, David
    Byles-Ho, Ciaran
    Khatib, Hani
    Sosa, Fabian
    Hu, Ting
    2022 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (IEEE CIBCB 2022), 2022, : 1 - 10
  • [10] Photon Reconstruction in the Belle II Calorimeter Using Graph Neural Networks
    Wemmer F.
    Haide I.
    Eppelt J.
    Ferber T.
    Beaubien A.
    Branchini P.
    Campajola M.
    Cecchi C.
    Cheema P.
    De Nardo G.
    Hearty C.
    Kuzmin A.
    Longo S.
    Manoni E.
    Meier F.
    Merola M.
    Miyabayashi K.
    Moneta S.
    Remnev M.
    Roney J.M.
    Shiu J.-G.
    Shwartz B.
    Unno Y.
    van Tonder R.
    Volpe R.
    Computing and Software for Big Science, 2023, 7 (1)