Literature Review of Deep-Learning-Based Detection of Violence in Video

被引:4
|
作者
Negre, Pablo [1 ]
Alonso, Ricardo S. [2 ,3 ]
Gonzalez-Briones, Alfonso [1 ]
Prieto, Javier [1 ]
Rodriguez-Gonzalez, Sara [1 ]
机构
[1] Univ Salamanca, BISITE Res Grp, Patio Escuelas, Salamanca 37008, Spain
[2] AIR Inst, Av Santiago Madrigal, Salamanca 37008, Spain
[3] UNIR Int Univ La Rioja, Av Paz,137, Logrono 26006, Spain
关键词
video violence detection; artificial intelligence; surveillance camera; action recognition; computer vision;
D O I
10.3390/s24124016
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Physical aggression is a serious and widespread problem in society, affecting people worldwide. It impacts nearly every aspect of life. While some studies explore the root causes of violent behavior, others focus on urban planning in high-crime areas. Real-time violence detection, powered by artificial intelligence, offers a direct and efficient solution, reducing the need for extensive human supervision and saving lives. This paper is a continuation of a systematic mapping study and its objective is to provide a comprehensive and up-to-date review of AI-based video violence detection, specifically in physical assaults. Regarding violence detection, the following have been grouped and categorized from the review of the selected papers: 21 challenges that remain to be solved, 28 datasets that have been created in recent years, 21 keyframe extraction methods, 16 types of algorithm inputs, as well as a wide variety of algorithm combinations and their corresponding accuracy results. Given the lack of recent reviews dealing with the detection of violence in video, this study is considered necessary and relevant.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] A Deep-Learning-Based Approach for Aircraft Engine Defect Detection
    Upadhyay, Anurag
    Li, Jun
    King, Steve
    Addepalli, Sri
    MACHINES, 2023, 11 (02)
  • [22] Annotated dataset for deep-learning-based bacterial colony detection
    Makrai, Laszlo
    Fodroczy, Bettina
    Nagy, Sara Agnes
    Czeiszing, Peter
    Csabai, Istvan
    Szita, Geza
    Solymosi, Norbert
    SCIENTIFIC DATA, 2023, 10 (01)
  • [23] Deep-Learning-Based Approach for IoT Attack and Malware Detection
    Tasci, Burak
    APPLIED SCIENCES-BASEL, 2024, 14 (18):
  • [24] Deep-Learning-Based Thickness Detection Method of Ice Covering
    Pi, Xinyu
    Zhang, Guoyong
    He, Lifu
    Feng, Wenqing
    Luo, Jing
    Ouyang, Yi
    2021 11TH INTERNATIONAL CONFERENCE ON POWER AND ENERGY SYSTEMS (ICPES 2021), 2021, : 526 - 530
  • [25] A cascaded deep-learning-based model for face mask detection
    Kumar, Akhil
    DATA TECHNOLOGIES AND APPLICATIONS, 2023, 57 (01) : 84 - 107
  • [26] Deep-Learning-Based Bughole Detection for Concrete Surface Image
    Yao, Gang
    Wei, Fujia
    Yang, Yang
    Sun, Yujia
    ADVANCES IN CIVIL ENGINEERING, 2019, 2019
  • [27] A cascaded deep-learning-based model for face mask detection
    Kumar, Akhil
    DATA TECHNOLOGIES AND APPLICATIONS, 2022, : 1 - 24
  • [28] Annotated dataset for deep-learning-based bacterial colony detection
    László Makrai
    Bettina Fodróczy
    Sára Ágnes Nagy
    Péter Czeiszing
    István Csabai
    Géza Szita
    Norbert Solymosi
    Scientific Data, 10
  • [29] A Deep-learning-based Floor Detection System for the Visually Impaired
    Delahoz, Yueng
    Labrador, Miguel A.
    2017 IEEE 15TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 15TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 3RD INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS(DASC/PICOM/DATACOM/CYBERSCI, 2017, : 883 - 888
  • [30] Deep-Learning-Based Network Intrusion Detection for SCADA Systems
    Yang, Huan
    Cheng, Liang
    Chuah, Mooi Choo
    2019 IEEE CONFERENCE ON COMMUNICATIONS AND NETWORK SECURITY (CNS), 2019,