Suppressed Dissolution of Fluorine-Rich SEI Enables Highly Reversible Zinc Metal Anode for Stable Aqueous Zinc-Ion Batteries

被引:12
|
作者
Zhang, Yanan [1 ]
Shen, Shenyu [1 ]
Xi, Kai [1 ]
Li, Peng [1 ]
Kang, Zihan [2 ]
Zhao, Jianyun [1 ]
Yin, Dandan [1 ]
Su, Yaqiong [1 ]
Zhao, Hongyang [1 ]
He, Guanjie [3 ]
Ding, Shujiang [1 ]
机构
[1] Xi An Jiao Tong Univ, Natl Innovat Platform Ctr Ind Educ Integrat Energy, State Key Lab Elect Insulat & Power Equipment, Sch Chem Engn Res,Ctr Energy Storage Mat Devices,M, Xian 710049, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Strength & Vibrat Mech Struct, Xian 710049, Peoples R China
[3] UCL, Dept Chem, Christopher Ingold Labs, 20 Gordon St, London WC1H 0AJ, England
基金
英国科研创新办公室; 中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Dendrite-Free Zn anode; Zinc-ion Batteries; Solid Electrolyte Interface; Dissolution; SOLID-ELECTROLYTE INTERPHASE; LOW-TEMPERATURE; CHEMISTRY; CATHODE;
D O I
10.1002/anie.202407067
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The instability of the solid electrolyte interface (SEI) is a critical challenge for the zinc metal anodes, leading to an erratic electrode/electrolyte interface and hydrogen evolution reaction (HER), ultimately resulting in anode failure. This study uncovers that the fluorine species dissolution is the root cause of SEI instability. To effectively suppress the F- dissolution, an introduction of a low-polarity molecule, 1,4-thioxane (TX), is proposed, which reinforces the stability of the fluorine-rich SEI. Moreover, the TX molecule has a strong affinity for coordinating with Zn2+ and adsorbing at the electrode/electrolyte interface, thereby diminishing the activity of local water and consequently impeding SEI dissolution. The robust fluorine-rich SEI layer promotes the high durability of the zinc anode in repeated plating/stripping cycles, while concurrently suppressing HER and enhancing Coulombic efficiency. Notably, the symmetric cell with TX demonstrates exceptional electrochemical performance, sustaining over 500 hours at 20 mA cm-2 with 10 mAh cm-2. Furthermore, the Zn||KVOH full cell exhibits excellent capacity retention, averaging 6.8 mAh cm-2 with 98 % retention after 400 cycles, even at high loading with a lean electrolyte. This work offers a novel perspective on SEI dissolution as a key factor in anode failure, providing valuable insights for the electrolyte design in energy storage devices. Fluorine-rich SEI dissolution is a major cause of zinc anode failure. The SEI content fluctuates significantly during the plating/stripping process, resulting in an unstable electrode/electrolyte interface. A versatile functional electrolyte additive, thioether-TX was introduced to reduce solvent polarity, as a poor solvent molecule for F-. Additionally, TX could modulate the Zn2+ solvation structure and adsorb at the electrode/electrolyte interface to reduce the activity of local water, further suppressing the dissolution of ZnF2 and stabilizing the fluorine-rich SEI layer. image
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Engineering Fluorine-rich Double Protective Layer on Zn Anode for Highly Reversible Aqueous Zinc-ion Batteries
    Li, Titi
    Hu, Sanlue
    Wang, Chenggang
    Wang, Dun
    Xu, Minwei
    Chang, Caiyun
    Xu, Xijin
    Han, Cuiping
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (51)
  • [2] Helmholtz Plane Reconfiguration Enables Robust Zinc Metal Anode in Aqueous Zinc-Ion Batteries
    Wu, Tingqing
    Hu, Chao
    Zhang, Qi
    Yang, Zefang
    Jin, Guanhua
    Li, Yixin
    Tang, Yougen
    Li, Huanhuan
    Wang, Haiyan
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (30)
  • [3] Interfacial Engineering Boosts Highly Reversible Zinc Metal for Aqueous Zinc-Ion Batteries
    Yao, Danwen
    Yu, Dongxu
    Yao, Shiyu
    Lu, Ziheng
    Li, Guoxiao
    Xu, Huailiang
    Du, Fei
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (13) : 16584 - 16592
  • [4] Highly reversible zinc metal anode for aqueous batteries
    Fei Wang
    Oleg Borodin
    Tao Gao
    Xiulin Fan
    Wei Sun
    Fudong Han
    Antonio Faraone
    Joseph A Dura
    Kang Xu
    Chunsheng Wang
    Nature Materials, 2018, 17 : 543 - 549
  • [5] Highly reversible zinc metal anode for aqueous batteries
    Wang, Fei
    Borodin, Oleg
    Gao, Tao
    Fan, Xiulin
    Sun, Wei
    Han, Fudong
    Faraone, Antonio
    Dura, Joseph A.
    Xu, Kang
    Wang, Chunsheng
    NATURE MATERIALS, 2018, 17 (06) : 543 - +
  • [6] Multifunctional Electrolyte Additive Enables Highly Reversible Anodes and Enhanced Stable Cathodes for Aqueous Zinc-Ion Batteries
    Gong X.
    Yang H.
    Wang J.
    Wang G.
    Tian J.
    ACS Applied Materials and Interfaces, 2023, 15 (03): : 4152 - 4165
  • [7] Stable zinc metal anode with an ultrathin carbon coating for zinc-ion batteries
    Zhang, Xiaolin
    Ruan, Qingdong
    Liu, Liangliang
    Li, Dan
    Xu, Yue
    Wang, Yinchuan
    Liu, Jinyuan
    Huang, Chao
    Xiong, Fangyu
    Wang, Bin
    Chu, Paul K.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 936
  • [8] Covalent organic framework film protected zinc anode for highly stable rechargeable aqueous zinc-ion batteries
    Zhao, Jing
    Ying, Yunpan
    Wang, Guiling
    Hu, Kedi
    Yuan, Yi Di
    Ye, Hualin
    Liu, Zhaolin
    Lee, Jim Yang
    Zhao, Dan
    ENERGY STORAGE MATERIALS, 2022, 48 : 82 - 89
  • [9] A versatile electrolyte additive enabling highly reversible Zn anode in aqueous zinc-ion batteries
    Zhou, Yikun
    Ma, Junhong
    Yuan, Yang
    Ma, Chaoyun
    Jia, Shaorui
    Zhang, Xinbo
    Zhang, Guirong
    Zhou, Xuye
    JOURNAL OF ENERGY STORAGE, 2024, 102
  • [10] Zinc Anode Protection Strategy for Aqueous Zinc-Ion Batteries
    Han Dong
    Ma Tao
    Sun Tian-Jiang
    Zhang Wei-Jia
    Tao Zhan-Liang
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2022, 38 (02) : 185 - 197